Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >【论文推荐】最新六篇知识图谱相关论文—全局关系嵌入、时序关系提取、对抗学习、远距离关系、时序知识图谱

【论文推荐】最新六篇知识图谱相关论文—全局关系嵌入、时序关系提取、对抗学习、远距离关系、时序知识图谱

作者头像
WZEARW
发布于 2018-06-05 07:29:04
发布于 2018-06-05 07:29:04
1.2K0
举报
文章被收录于专栏:专知专知

【导读】专知内容组整理了最近六篇知识图谱(Knowledge Graph)相关文章,为大家进行介绍,欢迎查看!

1. Approaches for Enriching and Improving Textual Knowledge Bases(丰富和改进文本知识库的方法)

作者:Besnik Fetahu

机构:der Gottfried Wilhelm Leibniz Universität Hannover

摘要:Verifiability is one of the core editing principles in Wikipedia, where editors are encouraged to provide citations for the added statements. Statements can be any arbitrary piece of text, ranging from a sentence up to a paragraph. However, in many cases, citations are either outdated, missing, or link to non-existing references (e.g. dead URL, moved content etc.). In total, 20\% of the cases such citations refer to news articles and represent the second most cited source. Even in cases where citations are provided, there are no explicit indicators for the span of a citation for a given piece of text. In addition to issues related with the verifiability principle, many Wikipedia entity pages are incomplete, with relevant information that is already available in online news sources missing. Even for the already existing citations, there is often a delay between the news publication time and the reference time. In this thesis, we address the aforementioned issues and propose automated approaches that enforce the verifiability principle in Wikipedia, and suggest relevant and missing news references for further enriching Wikipedia entity pages.

期刊:arXiv, 2018年4月20日

网址

http://www.zhuanzhi.ai/document/d414a76c4b97a6c3c04e89e5c79cf28e

2. Global Relation Embedding for Relation Extraction(关系提取的全局关系嵌入)

作者:Yu Su,Honglei Liu,Semih Yavuz,Izzeddin Gur,Huan Sun,Xifeng Yan

机构:University of California

摘要:We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.

期刊:arXiv, 2018年4月19日

网址

http://www.zhuanzhi.ai/document/f18e8240ce087b972a8c9f67059d6826

3.Improving Temporal Relation Extraction with a Globally Acquired Statistical Resource(利用全局获得的统计资源改善时序关系提取)

作者:Qiang Ning,Hao Wu,Haoruo Peng,Dan Roth

机构:University of Illinois at Urbana-Champaign

摘要:Extracting temporal relations (before, after, overlapping, etc.) is a key aspect of understanding events described in natural language. We argue that this task would gain from the availability of a resource that provides prior knowledge in the form of the temporal order that events usually follow. This paper develops such a resource -- a probabilistic knowledge base acquired in the news domain -- by extracting temporal relations between events from the New York Times (NYT) articles over a 20-year span (1987--2007). We show that existing temporal extraction systems can be improved via this resource. As a byproduct, we also show that interesting statistics can be retrieved from this resource, which can potentially benefit other time-aware tasks. The proposed system and resource are both publicly available.

期刊:arXiv, 2018年4月17日

网址

http://www.zhuanzhi.ai/document/0f06d52ab1185faaf2f85cfdc70f1c76

4.KBGAN: Adversarial Learning for Knowledge Graph Embeddings(KBGAN:基于对抗学习的知识图谱嵌入)

作者:Liwei Cai,William Yang Wang

机构:University of Washington

摘要:We introduce KBGAN, an adversarial learning framework to improve the performances of a wide range of existing knowledge graph embedding models. Because knowledge graphs typically only contain positive facts, sampling useful negative training examples is a non-trivial task. Replacing the head or tail entity of a fact with a uniformly randomly selected entity is a conventional method for generating negative facts, but the majority of the generated negative facts can be easily discriminated from positive facts, and will contribute little towards the training. Inspired by generative adversarial networks (GANs), we use one knowledge graph embedding model as a negative sample generator to assist the training of our desired model, which acts as the discriminator in GANs. This framework is independent of the concrete form of generator and discriminator, and therefore can utilize a wide variety of knowledge graph embedding models as its building blocks. In experiments, we adversarially train two translation-based models, TransE and TransD, each with assistance from one of the two probability-based models, DistMult and ComplEx. We evaluate the performances of KBGAN on the link prediction task, using three knowledge base completion datasets: FB15k-237, WN18 and WN18RR. Experimental results show that adversarial training substantially improves the performances of target embedding models under various settings.

期刊:arXiv, 2018年4月16日

网址

http://www.zhuanzhi.ai/document/29c85bf5138945822db0c2ed07173bde

5.CERES: Distantly Supervised Relation Extraction from the Semi-Structured Web(CERES:从半结构化的网络中提取远距离关系)

作者:Colin Lockard,Xin Luna Dong,Arash Einolghozati,Prashant Shiralkar

机构:University of Washington

摘要:The web contains countless semi-structured websites, which can be a rich source of information for populating knowledge bases. Existing methods for extracting relations from the DOM trees of semi-structured webpages can achieve high precision and recall only when manual annotations for each website are available. Although there have been efforts to learn extractors from automatically-generated labels, these methods are not sufficiently robust to succeed in settings with complex schemas and information-rich websites. In this paper we present a new method for automatic extraction from semi-structured websites based on distant supervision. We automatically generate training labels by aligning an existing knowledge base with a web page and leveraging the unique structural characteristics of semi-structured websites. We then train a classifier based on the potentially noisy and incomplete labels to predict new relation instances. Our method can compete with annotation-based techniques in the literature in terms of extraction quality. A large-scale experiment on over 400,000 pages from dozens of multi-lingual long-tail websites harvested 1.25 million facts at a precision of 90%.

期刊:arXiv, 2018年4月13日

网址

http://www.zhuanzhi.ai/document/d0062d1b0b884311f9141d9db22bb1c3

6.EventKG: A Multilingual Event-Centric Temporal Knowledge Graph(EventKG:一个多语言以事件为中心的时序知识图谱)

作者:Simon Gottschalk,Elena Demidova

机构:Leibniz Universit¨at Hannover

摘要:One of the key requirements to facilitate semantic analytics of information regarding contemporary and historical events on the Web, in the news and in social media is the availability of reference knowledge repositories containing comprehensive representations of events and temporal relations. Existing knowledge graphs, with popular examples including DBpedia, YAGO and Wikidata, focus mostly on entity-centric information and are insufficient in terms of their coverage and completeness with respect to events and temporal relations. EventKG presented in this paper is a multilingual event-centric temporal knowledge graph that addresses this gap. EventKG incorporates over 690 thousand contemporary and historical events and over 2.3 million temporal relations extracted from several large-scale knowledge graphs and semi-structured sources and makes them available through a canonical representation.

期刊:arXiv, 2018年4月12日

网址

http://www.zhuanzhi.ai/document/04a517ce46aeaca5970203a50e07d926

-END-

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-04-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 专知 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
【论文推荐】最新5篇自动问答相关论文——多关系自动问答、知识图谱联合实体和关系、生物医学问题、维基百科语料数据、多句式旅游推荐
【导读】专知内容组整理了最近自动问答相关文章,为大家进行介绍,欢迎查看! 1. An Interpretable Reasoning Network for Multi-Relation Question Answering(基于可解释推理网络的多关系自动问答) ---- ---- 作者:Mantong Zhou,Minlie Huang,Xiaoyan Zhu 摘要:Multi-relation Question Answering is a challenging task, due to the re
WZEARW
2018/04/13
9080
【论文推荐】最新5篇自动问答相关论文——多关系自动问答、知识图谱联合实体和关系、生物医学问题、维基百科语料数据、多句式旅游推荐
【论文推荐】最新5篇知识图谱相关论文—强化学习、习知识图谱的表示、词义消除歧义、并行翻译嵌入、图数据库
【导读】专知内容组整理了最近五篇知识图谱(Knowledge Graph)相关文章,为大家进行介绍,欢迎查看! 1. DeepPath: A Reinforcement Learning Method for Knowledge Graph Reasoning(DeepPath:一种知识图推理的强化学习方法) ---- 作者:Wenhan Xiong,Thien Hoang,William Yang Wang 摘要:We study the problem of learning to reason in
WZEARW
2018/04/12
1.6K0
【论文推荐】最新5篇知识图谱相关论文—强化学习、习知识图谱的表示、词义消除歧义、并行翻译嵌入、图数据库
【论文推荐】最新六篇视频分类相关论文—层次标签推断、知识图谱、CNNs、DAiSEE、表观和关系网络、转移学习
【导读】专知内容组整理了最近六篇视频分类(Video Classification)相关文章,为大家进行介绍,欢迎查看! 1. Hierarchical Label Inference for Video Classification(基于层次标签推断的视频分类) ---- ---- 作者:Nelson Nauata, Jonathan Smith, Greg Mori 摘要:Videos are a rich source of high-dimensional structured data, wi
WZEARW
2018/04/16
1.5K0
【论文推荐】最新六篇视频分类相关论文—层次标签推断、知识图谱、CNNs、DAiSEE、表观和关系网络、转移学习
【论文推荐】最新5篇度量学习(Metric Learning)相关论文—人脸验证、BIER、自适应图卷积、注意力机制、单次学习
【导读】专知内容组整理了最近五篇度量学习(Metric Learning)相关文章,为大家进行介绍,欢迎查看! 1. Additive Margin Softmax for Face Verification(基于additive margin softmax的人脸验证方法) ---- ---- 作者:Feng Wang,Weiyang Liu,Haijun Liu,Jian Cheng 摘要:In this paper, we propose a conceptually simple and geome
WZEARW
2018/04/13
5.5K0
【论文推荐】最新5篇度量学习(Metric Learning)相关论文—人脸验证、BIER、自适应图卷积、注意力机制、单次学习
【论文推荐】最新六篇知识图谱相关论文—Zero-shot识别、卷积二维知识图谱、变分知识图谱推理、张量分解、推荐
【导读】既昨天推出六篇知识图谱(Knowledge Graph)文章,专知内容组今天又推出最近六篇知识图谱相关文章,为大家进行介绍,欢迎查看! 1. Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs(基于语义嵌入和知识图谱零次识别) ---- ---- 作者:Xiaolong Wang,Yufei Ye,Abhinav Gupta 机构:Carnegie Mellon University 摘要:We consider th
WZEARW
2018/06/05
1.8K0
【论文推荐】最新七篇知识图谱相关论文—知识表示学习、增强神经网络、链接预测、关系预测与提取、综述、递归特性生成、深度知识感知网络
【导读】专知内容组整理了最近七篇知识图谱(Knowledge graphs)相关文章,为大家进行介绍,欢迎查看! 1. Does William Shakespeare REALLY Write Ha
WZEARW
2018/04/16
1.6K0
【论文推荐】最新七篇知识图谱相关论文—知识表示学习、增强神经网络、链接预测、关系预测与提取、综述、递归特性生成、深度知识感知网络
Github项目推荐 | 知识图谱文献集合
https://github.com/shaoxiongji/awesome-knowledge-graph
AI研习社
2019/05/08
2.6K0
【论文推荐】最新5篇信息抽取(IE)相关论文—开放信息抽取、不完整信息、主动学习、越南语、依存分析
【导读】专知内容组整理了最近五篇信息抽取(Information Extraction)相关文章,为大家进行介绍,欢迎查看! 1. Assertion-based QA with Question-Aware Open Information Extraction(基于Assertion的问答和问题感知的开放信息抽取) ---- ---- 作者:Zhao Yan,Duyu Tang,Nan Duan,Shujie Liu,Wendi Wang,Daxin Jiang,Ming Zhou,Zhoujun Li
WZEARW
2018/04/13
1.2K0
【论文推荐】最新5篇信息抽取(IE)相关论文—开放信息抽取、不完整信息、主动学习、越南语、依存分析
【论文推荐】最新5篇视频分类相关论文—上下文门限、深度学习、时态特征、结构化标签推理、自动机器学习调优
【导读】专知内容组整理了最近五篇视频分类(Video Classification)相关文章,为大家进行介绍,欢迎查看! 1.Learnable pooling with Context Gating for video classification(基于可学习的池化与上下文门限视频分类) ---- 作者:Antoine Miech,Ivan Laptev,Josef Sivic 摘要:Current methods for video analysis often extract frame-level
WZEARW
2018/04/08
1.3K0
【论文推荐】最新5篇视频分类相关论文—上下文门限、深度学习、时态特征、结构化标签推理、自动机器学习调优
【论文推荐】最新六篇视觉问答(VQA)相关论文—盲人问题、物体计数、多模态解释、视觉关系、对抗性网络、对偶循环注意力
【导读】专知内容组整理了最近六篇视觉问答(Visual Question Answering)相关文章,为大家进行介绍,欢迎查看! 1. VizWiz Grand Challenge: Answering Visual Questions from Blind People(VizWiz Grand Challenge:回答来自于盲人的视觉问题) ---- ---- 作者:Danna Gurari,Qing Li,Abigale J. Stangl,Anhong Guo,Chi Lin,Kristen Gr
WZEARW
2018/04/16
1.2K0
【论文推荐】最新六篇视觉问答(VQA)相关论文—盲人问题、物体计数、多模态解释、视觉关系、对抗性网络、对偶循环注意力
【论文推荐】最新六篇自动问答(QA)相关论文—复杂序列问答、注意力机制、长短时记忆、文本推理、多因素注意力、主动的问答智能体
【导读】专知内容组整理了最近六篇自动问答(Question Answering)相关文章,为大家进行介绍,欢迎查看! 1. Complex Sequential Question Answering: Towards Learning to Converse Over Linked Question Answer Pairs with a Knowledge Graph(复杂序列问答:基于知识图谱的问答对关联方法) ---- ---- 作者:Amrita Saha,Vardaan Pahuja,Mitesh
WZEARW
2018/04/16
1.6K0
【论文推荐】最新六篇自动问答(QA)相关论文—复杂序列问答、注意力机制、长短时记忆、文本推理、多因素注意力、主动的问答智能体
【论文】2019年各大顶会神经关系抽取(NRE)优质论文整理分享
本资源整理了2019年ACL, EMNLP, COLING, NAACL, AAAI, IJCAI等各类AI顶会中,一些神经网络关系提取(Neural Relation Extraction)相关的优质论文,文末根据关键词分类。
zenRRan
2020/02/18
1K0
【论文推荐】最新7篇条件随机场(CRF)相关论文—图像标注、对抗学习、端到端、注意力机制、三维人体姿态、图像分割、行为分割和识别
【导读】专知内容组整理了最近七篇条件随机场(Conditional Random Field )相关文章,为大家进行介绍,欢迎查看! 1. Deep Neural Networks In Fully Connected CRF For Image Labeling With Social Network Metadata(结合社交网络元数据的图像标注:全连接CRF的深度神经网络方法) ---- ---- 作者:Chengjiang Long,Roddy Collins,Eran Swears,Anthony
WZEARW
2018/04/13
1.5K0
【论文推荐】最新7篇条件随机场(CRF)相关论文—图像标注、对抗学习、端到端、注意力机制、三维人体姿态、图像分割、行为分割和识别
【论文推荐】最新七篇推荐系统相关论文—影响兴趣、知识Embeddings、 音乐推荐、非结构化、一致性、显式和隐式特征、知识图谱
【导读】专知内容组整理了最近七篇推荐系统(Recommender System)相关文章,为大家进行介绍,欢迎查看! 1.Learning Recommendations While Influencing Interests(在影响兴趣的同时学习推荐) ---- 作者:Rahul Meshram,D. Manjunath,Nikhil Karamchandani 摘要:Personalized recommendation systems (RS) are extensively used in many
WZEARW
2018/04/08
2.3K0
【论文推荐】最新七篇推荐系统相关论文—影响兴趣、知识Embeddings、 音乐推荐、非结构化、一致性、显式和隐式特征、知识图谱
【论文推荐】最新六篇情感分析相关论文—深度上下文、支持向量机、两级LSTM、多模态情感分析、软件工程、代码混合
【导读】专知内容组整理了最近六篇情感分析(Sentiment Analysis)相关文章,为大家进行介绍,欢迎查看! 1. Deep contextualized word representations(深度上下文的词表示) 作者:Matthew E. Peters,Mark Neumann,Mohit Iyyer,Matt Gardner,Christopher Clark,Kenton Lee,Luke Zettlemoyer 机构:University of Washington 摘要:We int
WZEARW
2018/04/13
3K0
【论文推荐】最新六篇情感分析相关论文—深度上下文、支持向量机、两级LSTM、多模态情感分析、软件工程、代码混合
【论文推荐】最新六篇自动问答相关论文—排序函数、文本摘要评估、信息抽取框架、层次递归编码器、半监督问答
【导读】既前两天推出十三篇自动问答(Question Answering)相关文章,专知内容组今天又推出六篇自动问答相关文章,为大家进行介绍,欢迎查看! 14. Training a Ranking Function for Open-Domain Question Answering(训练排序函数对开放式问题进行回答) ---- ---- 作者:Phu Mon Htut,Samuel R. Bowman,Kyunghyun Cho 机构:New York University 摘要:In recent y
WZEARW
2018/06/05
7630
【论文推荐】最新七篇自注意力机制(Self-attention)相关论文—结构化自注意力、相对位置、混合、句子表达、文本向量
【导读】专知内容组整理了最近七篇自注意力机制(Self-attention)相关文章,为大家进行介绍,欢迎查看! 1. A Structured Self-attentive Sentence Embedding(一个结构化的自注意力的句子嵌入) ---- 作者:Zhouhan Lin,Minwei Feng,Cicero Nogueira dos Santos,Mo Yu,Bing Xiang,Bowen Zhou,Yoshua Bengio 机构:Montreal Institute for Learn
WZEARW
2018/04/08
8.7K0
【论文推荐】最新七篇自注意力机制(Self-attention)相关论文—结构化自注意力、相对位置、混合、句子表达、文本向量
【论文推荐】最新五篇命名实体识别(NER)相关论文—对抗学习、语料库、深度多任务学习、先验知识、跨语言语义
【导读】专知内容组整理了最近五篇命名实体识别(Named Entity Recognition)相关文章,为大家进行介绍,欢迎查看! 1. Adversarial Learning for Chinese NER from Crowd Annotations(中文命名实体识别:基于众包机制的对抗学习方法) ---- ---- 作者:YaoSheng Yang,Meishan Zhang,Wenliang Chen,Wei Zhang,Haofen Wang,Min Zhang 摘要:To quickly o
WZEARW
2018/04/16
2.2K0
【论文推荐】最新五篇命名实体识别(NER)相关论文—对抗学习、语料库、深度多任务学习、先验知识、跨语言语义
【论文推荐】最新六篇推荐系统相关论文—注意力机制、多任务、协同跨网络、非结构化文本、TransRev、章节推荐
【导读】专知内容组整理了最近六篇推荐系统(Recommended System)相关文章,为大家进行介绍,欢迎查看! 1. Attention-based Group Recommendation(基于注意力机制的群组推荐) ---- ---- 作者:Tran Dang Quang Vinh,Tuan-Anh Nguyen Pham,Gao Cong,Xiao-Li Li 机构:Nanyang Technological University 摘要:Recommender systems are wide
WZEARW
2018/06/05
1.3K0
【论文推荐】最新七篇图像检索相关论文—草图、Tie-Aware、场景图解析、叠加跨注意力机制、深度哈希、人群估计
【导读】专知内容组整理了最近七篇图像检索(Image Retrieval)相关文章,为大家进行介绍,欢迎查看! 1. Cross-Paced Representation Learning with Partial Curricula for Sketch-based Image Retrieval(基于草图的图像检索) ---- ---- 作者:Dan Xu,Xavier Alameda-Pineda,Jingkuan Song,Elisa Ricci,Nicu Sebe 机构:Indiana Unive
WZEARW
2018/06/05
1.2K0
推荐阅读
【论文推荐】最新5篇自动问答相关论文——多关系自动问答、知识图谱联合实体和关系、生物医学问题、维基百科语料数据、多句式旅游推荐
9080
【论文推荐】最新5篇知识图谱相关论文—强化学习、习知识图谱的表示、词义消除歧义、并行翻译嵌入、图数据库
1.6K0
【论文推荐】最新六篇视频分类相关论文—层次标签推断、知识图谱、CNNs、DAiSEE、表观和关系网络、转移学习
1.5K0
【论文推荐】最新5篇度量学习(Metric Learning)相关论文—人脸验证、BIER、自适应图卷积、注意力机制、单次学习
5.5K0
【论文推荐】最新六篇知识图谱相关论文—Zero-shot识别、卷积二维知识图谱、变分知识图谱推理、张量分解、推荐
1.8K0
【论文推荐】最新七篇知识图谱相关论文—知识表示学习、增强神经网络、链接预测、关系预测与提取、综述、递归特性生成、深度知识感知网络
1.6K0
Github项目推荐 | 知识图谱文献集合
2.6K0
【论文推荐】最新5篇信息抽取(IE)相关论文—开放信息抽取、不完整信息、主动学习、越南语、依存分析
1.2K0
【论文推荐】最新5篇视频分类相关论文—上下文门限、深度学习、时态特征、结构化标签推理、自动机器学习调优
1.3K0
【论文推荐】最新六篇视觉问答(VQA)相关论文—盲人问题、物体计数、多模态解释、视觉关系、对抗性网络、对偶循环注意力
1.2K0
【论文推荐】最新六篇自动问答(QA)相关论文—复杂序列问答、注意力机制、长短时记忆、文本推理、多因素注意力、主动的问答智能体
1.6K0
【论文】2019年各大顶会神经关系抽取(NRE)优质论文整理分享
1K0
【论文推荐】最新7篇条件随机场(CRF)相关论文—图像标注、对抗学习、端到端、注意力机制、三维人体姿态、图像分割、行为分割和识别
1.5K0
【论文推荐】最新七篇推荐系统相关论文—影响兴趣、知识Embeddings、 音乐推荐、非结构化、一致性、显式和隐式特征、知识图谱
2.3K0
【论文推荐】最新六篇情感分析相关论文—深度上下文、支持向量机、两级LSTM、多模态情感分析、软件工程、代码混合
3K0
【论文推荐】最新六篇自动问答相关论文—排序函数、文本摘要评估、信息抽取框架、层次递归编码器、半监督问答
7630
【论文推荐】最新七篇自注意力机制(Self-attention)相关论文—结构化自注意力、相对位置、混合、句子表达、文本向量
8.7K0
【论文推荐】最新五篇命名实体识别(NER)相关论文—对抗学习、语料库、深度多任务学习、先验知识、跨语言语义
2.2K0
【论文推荐】最新六篇推荐系统相关论文—注意力机制、多任务、协同跨网络、非结构化文本、TransRev、章节推荐
1.3K0
【论文推荐】最新七篇图像检索相关论文—草图、Tie-Aware、场景图解析、叠加跨注意力机制、深度哈希、人群估计
1.2K0
相关推荐
【论文推荐】最新5篇自动问答相关论文——多关系自动问答、知识图谱联合实体和关系、生物医学问题、维基百科语料数据、多句式旅游推荐
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档