Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >JDK 8 Stream 数据流效率怎么样?

JDK 8 Stream 数据流效率怎么样?

作者头像
芋道源码
发布于 2022-06-16 04:45:41
发布于 2022-06-16 04:45:41
31100
代码可运行
举报
文章被收录于专栏:芋道源码1024芋道源码1024
运行总次数:0
代码可运行

点击上方“芋道源码”,选择“设为星标

管她前浪,还是后浪?

能浪的浪,才是好浪!

每天 10:33 更新文章,每天掉亿点点头发...

源码精品专栏

来源:blog.csdn.net/Al_assad/

article/details/82356606


Stream 是Java SE 8类库中新增的关键抽象,它被定义于 java.util.stream (这个包里有若干流类型:Stream<T> 代表对象引用流,此外还有一系列特化流,如 IntStream,LongStream,DoubleStream等。

Java 8 引入的的Stream主要用于取代部分Collection的操作,每个流代表一个值序列,流提供一系列常用的聚集操作,可以便捷的在它上面进行各种运算。集合类库也提供了便捷的方式使我们可以以操作流的方式使用集合、数组以及其它数据结构

stream 的操作种类

①中间操作

  • 当数据源中的数据上了流水线后,这个过程对数据进行的所有操作都称为“中间操作”;
  • 中间操作仍然会返回一个流对象,因此多个中间操作可以串连起来形成一个流水线;
  • stream 提供了多种类型的中间操作,如 filter、distinct、map、sorted 等等;

②终端操作

  • 当所有的中间操作完成后,若要将数据从流水线上拿下来,则需要执行终端操作;
  • stream 对于终端操作,可以直接提供一个中间操作的结果,或者将结果转换为特定的 collection、array、String 等;

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能。 项目地址:https://github.com/YunaiV/ruoyi-vue-pro

stream 的特点

①只能遍历一次:

数据流的从一头获取数据源,在流水线上依次对元素进行操作,当元素通过流水线,便无法再对其进行操作,可以重新在数据源获取一个新的数据流进行操作;

②采用内部迭代的方式:

对Collection进行处理,一般会使用 Iterator 遍历器的遍历方式,这是一种外部迭代;

而对于处理Stream,只要申明处理方式,处理过程由流对象自行完成,这是一种内部迭代,对于大量数据的迭代处理中,内部迭代比外部迭代要更加高效;

基于微服务的思想,构建在 B2C 电商场景下的项目实战。核心技术栈,是 Spring Boot + Dubbo 。未来,会重构成 Spring Cloud Alibaba 。 项目地址:https://github.com/YunaiV/onemall

stream 相对于 Collection 的优点

  • 无存储: 流并不存储值;流的元素源自数据源(可能是某个数据结构、生成函数或I/O通道等等),通过一系列计算步骤得到;
  • 函数式风格: 对流的操作会产生一个结果,但流的数据源不会被修改;
  • 惰性求值: 多数流操作(包括过滤、映射、排序以及去重)都可以以惰性方式实现。这使得我们可以用一遍遍历完成整个流水线操作,并可以用短路操作提供更高效的实现;
  • 无需上界: 不少问题都可以被表达为无限流(infinite stream):用户不停地读取流直到满意的结果出现为止(比如说,枚举 完美数 这个操作可以被表达为在所有整数上进行过滤);集合是有限的,但流可以表达为无线流;
  • 代码简练: 对于一些collection的迭代处理操作,使用 stream 编写可以十分简洁,如果使用传统的 collection 迭代操作,代码可能十分啰嗦,可读性也会比较糟糕;

stream 和 iterator 迭代的效率比较

好了,上面 stream 的优点吹了那么多,stream 函数式的写法是很舒服,那么 steam 的效率到底怎样呢?

先说结论:

  • 传统 iterator (for-loop) 比 stream(JDK8) 迭代性能要高,尤其在小数据量的情况下;

- 在多核情景下,对于大数据量的处理,parallel stream 可以有比 iterator 更高的迭代处理效率;

我分别对一个随机数列 List (数量从 10 到 10000000)进行映射、过滤、排序、规约统计、字符串转化场景下,对使用 stream 和 iterator 实现的运行效率进行了统计,测试代码 基准测试代码链接

测试环境如下:

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
System:Ubuntu 16.04 xenial

CPU:Intel Core i7-8550U

RAM:16GB

JDK version:1.8.0_151

JVM:HotSpot(TM) 64-Bit Server VM (build 25.151-b12, mixed mode)

JVM Settings:

    -Xms1024m

    -Xmx6144m

    -XX:MaxMetaspaceSize=512m

    -XX:ReservedCodeCacheSize=1024m

    -XX:+UseConcMarkSweepGC

    -XX:SoftRefLRUPolicyMSPerMB=100

1. 映射处理测试

把一个随机数列(List<Integer>)中的每一个元素自增1后,重新组装为一个新的 List<Integer>,测试的随机数列容量从 10 - 10000000,跑10次取平均时间;

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
//stream
List<Integer> result = list.stream()
.mapToInt(x -> x)
.map(x -> ++x)
.boxed()
.collect(Collectors.toCollection(ArrayList::new));
//iterator
List<Integer> result = new ArrayList<>();
for(Integer e : list){
    result.add(++e);
}
//parallel stream
List<Integer> result = list.parallelStream()
.mapToInt(x -> x)
.map(x -> ++x)
.boxed()
.collect(Collectors.toCollection(ArrayList::new));

2. 过滤处理测试

取出一个随机数列(List<Integer>)中的大于 200 的元素,并组装为一个新的 List<Integer>,测试的随机数列容量从 10 - 10000000,跑10次取平均时间;

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
//stream
List<Integer> result = list.stream()
.mapToInt(x -> x)
.filter(x -> x > 200)
.boxed()
.collect(Collectors.toCollection(ArrayList::new));
//iterator
List<Integer> result = new ArrayList<>(list.size());
for(Integer e : list){
    if(e > 200){
        result.add(e);
    }
}
//parallel stream
List<Integer> result = list.parallelStream()
.mapToInt(x -> x)
.filter(x -> x > 200)
.boxed()
.collect(Collectors.toCollection(ArrayList::new));

3. 自然排序测试

对一个随机数列(List<Integer>)进行自然排序,并组装为一个新的 List<Integer>,iterator 使用的是 Collections # sort API(使用归并排序算法实现),测试的随机数列容量从 10 - 10000000,跑10次取平均时间;

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
//stream
List<Integer> result = list.stream()
.mapToInt(x->x)
.sorted()
.boxed()
.collect(Collectors.toCollection(ArrayList::new));
//iterator
List<Integer> result = new ArrayList<>(list);
Collections.sort(result);
//parallel stream
List<Integer> result = list.parallelStream()
.mapToInt(x->x)
.sorted()
.boxed()
.collect(Collectors.toCollection(ArrayList::new));

4. 归约统计测试

获取一个随机数列(List<Integer>)的最大值,测试的随机数列容量从 10 - 10000000,跑10次取平均时间;

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
//stream
int max = list.stream()
.mapToInt(x -> x)
.max()
.getAsInt();
//iterator
int max = -1;
for(Integer e : list){
    if(e > max){
        max = e;
    }
}
//parallel stream
int max = list.parallelStream()
.mapToInt(x -> x)
.max()
.getAsInt();

5. 字符串拼接测试

获取一个随机数列(List<Integer>)各个元素使用“,”分隔的字符串,测试的随机数列容量从 10 - 10000000,跑10次取平均时间;

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
  //stream
String result = list.stream().map(String::valueOf).collect(Collectors.joining(","));
//iterator
StringBuilder builder = new StringBuilder();
for(Integer e : list){
    builder.append(e).append(",");
}
String result = builder.length() == 0 ? "" : builder.substring(0,builder.length() - 1);
//parallel stream
String result = list.stream().map(String::valueOf).collect(Collectors.joining(","));

6. 混合操作测试

对一个随机数列(List<Integer>)进行去空值,除重,映射,过滤,并组装为一个新的 List<Integer>,测试的随机数列容量从 10 - 10000000,跑10次取平均时间;

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
//stream
List<Integer> result = list.stream()
.filter(Objects::nonNull)
.mapToInt(x -> x + 1)
.filter(x -> x > 200)
.distinct()
.boxed()
.collect(Collectors.toCollection(ArrayList::new));
//iterator
HashSet<Integer> set  = new HashSet<>(list.size());
for(Integer e : list){
    if(e != null && e > 200){
        set.add(e + 1);
    }
}
List<Integer> result = new ArrayList<>(set);
//parallel stream
List<Integer> result = list.parallelStream()
.filter(Objects::nonNull)
.mapToInt(x -> x + 1)
.filter(x -> x > 200)
.distinct()
.boxed()
.collect(Collectors.toCollection(ArrayList::new));

实验结果总结

从以上的实验来看,可以总结处以下几点:

  • 在少低数据量的处理场景中(size<=1000),stream 的处理效率是不如传统的 iterator 外部迭代器处理速度快的,但是实际上这些处理任务本身运行时间都低于毫秒,这点效率的差距对普通业务几乎没有影响,反而 stream 可以使得代码更加简洁;
  • 在大数据量(szie>10000)时,stream 的处理效率会高于 iterator,特别是使用了并行流,在cpu恰好将线程分配到多个核心的条件下(当然parallel stream 底层使用的是 JVM 的 ForkJoinPool,这东西分配线程本身就很玄学),可以达到一个很高的运行效率,然而实际普通业务一般不会有需要迭代高于10000次的计算;
  • Parallel Stream 受引 CPU 环境影响很大,当没分配到多个cpu核心时,加上引用 forkJoinPool 的开销,运行效率可能还不如普通的 Stream;

使用 Stream 的建议

  • 简单的迭代逻辑,可以直接使用 iterator,对于有多步处理的迭代逻辑,可以使用 stream,损失一点几乎没有的效率,换来代码的高可读性是值得的;
  • 单核 cpu 环境,不推荐使用 parallel stream,在多核 cpu 且有大数据量的条件下,推荐使用 paralle stream;
  • stream 中含有装箱类型,在进行中间操作之前,最好转成对应的数值流,减少由于频繁的拆箱、装箱造成的性能损失;


欢迎加入我的知识星球,一起探讨架构,交流源码。加入方式,长按下方二维码噢

已在知识星球更新源码解析如下:

最近更新《芋道 SpringBoot 2.X 入门》系列,已经 101 余篇,覆盖了 MyBatis、RedisMongoDB、ES、分库分表、读写分离、SpringMVC、Webflux、权限、WebSocket、Dubbo、RabbitMQ、RocketMQ、Kafka性能测试等等内容。

提供近 3W 行代码的 SpringBoot 示例,以及超 4W 行代码的电商微服务项目。

获取方式:点“在看”,关注公众号并回复 666 领取,更多内容陆续奉上。

代码语言:javascript
代码运行次数:0
运行
AI代码解释
复制
文章有帮助的话,在看,转发吧。谢谢支持哟 (*^__^*
本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2022-06-15,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 芋道源码 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Java8 Stream 数据流,大数据量下的性能效率怎么样?
Stream 是Java SE 8类库中新增的关键抽象,它被定义于 java.util.stream (这个包里有若干流类型:Stream<T> 代表对象引用流,此外还有一系列特化流,如 IntStream,LongStream,DoubleStream等。
芋道源码
2021/03/09
1.6K0
Java8 Stream 数据流,大数据量下的性能效率怎么样?
Java8 Stream 遍历数据效率差?实测结果出乎意料~~
Stream 是Java SE 8类库中新增的关键抽象,它被定义于 java.util.stream (这个包里有若干流类型:Stream代表对象引用流,此外还有一系列特化流,如 IntStream,LongStream,DoubleStream等 ),Java 8 引入的的Stream主要用于取代部分Collection的操作,每个流代表一个值序列,流提供一系列常用的聚集操作,可以便捷的在它上面进行各种运算。集合类库也提供了便捷的方式使我们可以以操作流的方式使用集合、数组以及其它数据结构;
搜云库技术团队
2023/03/15
1.1K0
Java8 Stream 遍历数据效率差?实测结果出乎意料~~
Java8新特性之Stream流(含具体案例)
Stream 流是 Java 8 新提供给开发者的一组操作集合的 API,将要处理的元素集合看作一种流, 流在管道中传输, 并且可以在管道的节点上进行处理, 比如筛选、排序、聚合等。元素流在管道中经过中间操作(intermediate operation)的处理,最后由终端操作 (terminal operation) 得到前面处理的结果。Stream 流可以极大的提高开发效率,也可以使用它写出更加简洁明了的代码。我自从接触过 Stream 流之后,可以说对它爱不释手。
军军不吃鸡
2022/10/26
2.8K1
Java8新特性之Stream流(含具体案例)
java1.8新特性之stream
Stream字面意思是流,在java中是指一个来自数据源的元素队列并支持聚合操作,存在于java.util包中,又或者说是能应用在一组元素上一次执行的操作序列。(stream是一个由特定类型对象组成的一个支持聚合操作的队列。)注意Java中的Stream并不会存储元素,而是按需计算。关于这个概念需要以下几点解释:1、数据源流的来源。 它可以是列表,集合,数组(java.util.Collection的子类),I/O channel, 产生器generator等(注意Map是不支持的);2、聚合操作。类似于SQL语句一样的操作, 如filter, map, reduce, find, match, sorted等。因此stream流和以前的Collection操作是完全不同, Stream操作还有两个非常基础的特征:Pipelining和内部迭代。
啃饼思录
2020/05/04
1K0
工作后, 你一定不能错过技术之JDK1.8的新特性
而在企业开发中, 主要用到的便是Lambda表达式和Stream流 , 而在下面,我们便主要的去学习这两方面的知识
时间静止不是简史
2020/07/27
6310
【小家java】java8新特性之---Stream API 详解 (Map-reduce、Collectors收集器、并行流、groupby多字段分组)
Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念。
YourBatman
2019/09/03
3.3K0
【小家java】java8新特性之---Stream API 详解  (Map-reduce、Collectors收集器、并行流、groupby多字段分组)
一文带你入门Java Stream流,太强了
两个星期以前,就有读者强烈要求我写一篇 Java Stream 流的文章,我说市面上不是已经有很多了吗,结果你猜他怎么说:“就想看你写的啊!”你看你看,多么苍白的喜欢啊。那就“勉为其难”写一篇吧,嘻嘻。
沉默王二
2020/04/07
5470
一文带你入门Java Stream流,太强了
JDK1.8的Lambda、Stream和日期的使用详解(很详细)
本篇主要讲述是Java中JDK1.8的一些新语法特性使用,主要是Lambda、Stream和LocalDate日期的一些使用讲解。
田维常
2019/07/16
1.3K0
Jdk8 之 Stream流详细用法(一)
本篇文章参考云深i不知处的文章 原文链接:https://blog.csdn.net/mu_wind/article/details/109516995
木字楠
2022/11/15
4230
Jdk8 之 Stream流详细用法(一)
Java从入门到精通十七(Stream 流)
这是java8 引入的新的特性 和之前介绍的java IO 流多多少少有所区别。简单的说IO就是进行了基本的数据传输操作,Stream是对集合的数据进行过滤操作。主要就是对集合进行操作。IO涉及比较广,主要还是进行数据的传输。
兰舟千帆
2022/07/16
6080
Java从入门到精通十七(Stream 流)
Java 基础概念·Java Stream
Stream 和其它集合类的区别在于:其它集合类主要关注与有限数量的数据的访问和有效管理(增删改),而 Stream 并没有提供访问和管理元素的方式,而是通过声明数据源的方式,利用可计算的操作在数据源上执行。
数媒派
2022/12/01
1.1K0
JDK8系列之Stream API入门教程和示例
在前面的章节的学习中,我们学习了jdk8的新特性,lambada表达式、方法引用、函数式接口等等,接着本博客继续JDK8的一个比较重要的特性,JDK8 Stream API
SmileNicky
2021/07/21
7350
【JAVA】你认识强大的 Stream 和 Optional 吗?
早已仰慕 Stream 流久已,终于有机会彻底的了解其特性以及用法了,关于源码的深度理解可能还需要继续增加功底,在学 Stream 的时候,同时认识了强大的 Optional,奈斯!
sidiot
2023/08/31
2800
JAVA8 Stream学习
parallelStream提供了流的并行处理,它是Stream的另一重要特性,其底层使用Fork/Join框架实现。简单理解就是多线程异步任务的一种实现。
全栈程序员站长
2022/07/09
2950
Java流的性能优化:提升数据处理速度的策略!
咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE相关知识点了,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~
bug菌
2024/09/20
2110
Java流的性能优化:提升数据处理速度的策略!
Java基础(二十六):Stream流及Optional类
ps:集合中数据为空,会抛异常No value present,后面会将Optional类的空值处理
Java微观世界
2025/01/20
2590
Java基础(二十六):Stream流及Optional类
JDK8新特性-Stream流[通俗易懂]
作者是一个来自河源的大三在校生,以下笔记都是作者自学之路的一些浅薄经验,如有错误请指正,将来会不断的完善笔记,帮助更多的Java爱好者入门。
全栈程序员站长
2022/11/10
5430
把Stream流学透了你也能写出简洁高效的代码,快来点击进来看看吧(建议收藏)
  最近刚好有空给大家整理下JDK8的特性,这个在实际开发中的作用也是越来越重了,本文重点讲解下Stream API
用户4919348
2021/06/10
5280
把Stream流学透了你也能写出简洁高效的代码,快来点击进来看看吧(建议收藏)
Java8-Stream API 详解
Stream 作为 Java 8 的一大亮点,它与 java.io 包里的 InputStream 和 OutputStream 是完全不同的概念。它也不同于 StAX 对 XML 解析的 Stream,也不是 Amazon Kinesis 对大数据实时处理的 Stream。Java 8 中的 Stream 是对集合(Collection)对象功能的增强,它专注于对集合对象进行各种非常便利、高效的聚合操作(aggregate operation),或者大批量数据操作 (bulk data operation)。Stream API 借助于同样新出现的 Lambda 表达式,极大的提高编程效率和程序可读性。同时它提供串行和并行两种模式进行汇聚操作,并发模式能够充分利用多核处理器的优势,使用 fork/join 并行方式来拆分任务和加速处理过程。通常编写并行代码很难而且容易出错, 但使用 Stream API 无需编写一行多线程的代码,就可以很方便地写出高性能的并发程序。所以说,Java 8 中首次出现的 java.util.stream 是一个函数式语言+多核时代综合影响的产物。
用户7886150
2020/12/13
5550
流 Stream
流处理是对运动中的数据的处理,在生成或接收数据时直接计算数据。应用程序中分析和查询不断存在,数据不断地流经它们。在从流中接收到事件时,流处理应用程序对该事件作出反应。
Qwe7
2022/08/06
5460
推荐阅读
相关推荐
Java8 Stream 数据流,大数据量下的性能效率怎么样?
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档
本文部分代码块支持一键运行,欢迎体验
本文部分代码块支持一键运行,欢迎体验