Loading [MathJax]/jax/output/CommonHTML/config.js
前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >从大数据中「提炼」出商业见解,企业还有很多工作要做

从大数据中「提炼」出商业见解,企业还有很多工作要做

作者头像
小莹莹
发布于 2018-04-23 08:16:28
发布于 2018-04-23 08:16:28
8100
举报

编者按:随着互联网的普及化以及物联网的快速发展,人们产生的数据也越来越多。早几年前,马云就突出了当前是“DT”时代的说法。但数据的多并不代表着就是好事,只有被利用起来的数据才是好事。有人将数据称为是“新石油”,这个比喻是非常恰当的。因为石油本身没有任何价值,它必须被提炼成汽油或塑料才有价值。同样地,我们都被大量的数据淹没了,但为了获得真正的价值,这些数据必须被提炼成商业见解。

大数据

我们生活在一个越来越依赖数据的社会,信息正变得和金钱一样。例如,许多消费者使用谷歌、Facebook、亚马逊、微软和苹果等互联网巨头提供的免费服务。作为服务的回报,这些公司可以追踪他们的在线行为,并进行商业化变现。

当前,这种交易的最大的问题之一就是开放性,人们的个人信息(有时是无意的)会泄露给为他们提供网络服务的企业。近期在大西洋两岸的投票都表明, 有些数据管理机构 能够利用大量的用户数据(包括人口统计数据、消费者行为和互联网中的活动),来对广告、新闻报道和服务进行微观定位,以完成特定的目的。

显然,数据闸门现在正在向各种规模和类型的企业开放。通过及时的分析,能够给企业带来很多的竞争优势。虽然说目前大部分企业都把目光偏向到客户行为上,但数据可以在产品或服务供应链的多个环节中获得,而且有多种形式——传统的(结构化的)、临时的(非结构化的)、实时的、物联网——或者是M2M(译者注:M2M全称Machine to Machine,是指数据从一台终端传送到另一台终端,也就是机器与机器的对话)生成的,等等。

成功利用大数据的公司可以节约成本,并提高运营效率,从数据驱动的创新中获得丰厚的回报。同时,大数据也可以帮助企业实现数字化转型,让它们能够在面对任何颠覆性的创业公司时保持竞争力。

然而,有用的商业见解不会自动从各种各样的信息中浮现出来。企业必须识别、组织和分析可操作的数据,并将数据分析的结果与业务相关部分结合起来。这需要规划、预算以及合适的工具和专业知识等支持。

数据量到底有多少?

人们会定期估算每年全球产生的数据量,以及以何种形式产生数据。早在2014年IDC和EMC发布的报告中, 2013年的数据量有4.4 ZB ,即4.4万亿GB,并预测2020年这一数字将增长至44 ZB,每两年翻一番。根据 IDC和Seagate 的数据,估计2025年的数据量为163 ZB,比2016年的16.1 ZB增加10倍。

大数据

IDC 和Seagate报告还预测,全球范围内的大部分数据来源将从消费者转向企业,后者产生的数据在2025年将占到整体的60%。根据这份报告,推动这种转变的趋势包括:数据从作为商业背景到决策关键的转变;嵌入式系统和物联网的发展;改变现状的认知/人工智能系统的发展;移动和实时数据的产生;以及安全正在逐渐成为一个关键的基础等等。

所有这些数据都需要一个“家”,要么是永久的,要么是暂时的,这就解释了Seagate这样的存储公司是怎么挣钱的。

在发布这份报告的声明中 ,Seagate首席执行官Steve Luczo表示:

虽然我们可以从研究报告中看出大数据时代已经到来,但数据的价值并不是‘已知的’,而是‘未知的’,我们严重低估了这一潜力。真正令人兴奋的是分析‘新业务、新思维和新生态系统,从机器人和机器到机器学习等行业’,以及它们带给我们社会和经济的影响。数据能够给今天和未来的企业家带来巨大的价值,我们的全球商业领袖将在未来几十年里探索这些机会。”

都有哪些数据?

当然,并不是所有数据都能够用于分析。例如,在2025年的数据时代报告中,IDC估计到2025年,全球数据中大约20%的数据对我们的日常生活至关重要,其中10%的数据将会是“超级关键”的。

大数据

该报告指出:“超级关键数据的出现,迫使企业必须开发和部署数据采集、分析和基础设施;保证数据存储的可靠性、可用性以及更安全的系统;并进行新的业务实践,甚至制定新的政策与规定,来减轻、转移和削弱潜在的负债风险。”

人工智能和机器学习将越来越多地参与到大数据分析中,这进一步限制了可用的数据量。在报告中,IDC估计,到2025年底,全球数据中被标记的只有15%,所以才适合人工智能/机器学习分析。

大数据

大数据趋势和预测

每年,各种技术领域的专家都会对当前的趋势进行总结,并对未来12个月做出预测。大数据也不例外,我们整理了多个专家在2017年做出的预测,并对这些预测进行了分类。以下是一些分析结果:

大数据

数据主要来自:Acodez,Big Data Made Simple,Datafloq,Datameer,Enterra解决方案,Gartner,惠普,IBM,Infogix,MapR,甲骨文,Ovum,Pentaho,Quantzig,RTInsights,Sysmech,Tableau软件

对于大数据行业观察者来说,2017年最有影响力的领域是人工智能、机器学习、自动化和认知系统。例如,分析公司 Ovum 认为,“机器学习是一个巨大的颠覆者”、“嵌入式机器学习的分析应用正成为常态”。

如果企业要避免被数据淹没,提高自动化水平几乎是不可避免的——或者,正如 Enterra Systems 所言:“随着数据量的增加,人工智能将变得越来越重要。”

另外一个重要的话题是“数据驱动的商业决策”的出现。 甲骨文 简洁地指出,“应用,而不仅仅是分析,推动了大数据的进程”,而 Gartner预测 “数据和分析将推动现代商业运营,而不仅仅是反映他们的业绩”。

此外,在2017年的预测中被广泛关注的还涉及信息、数据科学与数据工程、大数据扩散与治理以及基于云的分析与集成数据服务。

一些调查报告

自2012年以来,管理咨询公司 NewVantage Partners(NVP) 一直在调查财富1000强企业的大数据部署情况, 并于2017年4月发布了第五份报告 (调查对象是这些公司的管理者)。

NVP的大数据调查显示,80.7%的受访者认为他们的大数据投资是成功的,有48.4%的受访者表示“结果是可以测量的”。后者被细分为“极致成功”(颠覆性/创新/变革型,21%)和“非常成功”(进化型,27.4%)。

大数据

正在进行的各种大数据相关项目中,排名第一的是“通过运营来降低成本,提高效益”,占比72.6%。68.7%的受访者认为这是一个“为创新和颠覆创造新的途径”。

尽管有很多公司都启动了相关项目,并取得了不小的成果。但根据NewVantage Partners的报告。在《财富》1000强的企业中,似乎仍难以建立数据驱动的企业文化:69.4%的公司已经开始采取行动,但只有27.9%的公司表示有效果。

在为什么难以建立一个数据驱动的企业文化问题中,NVP的调查发现,“组织协调不足”的比例在42.6%左右,排在“缺乏中层管理人员接受和理解”(41%)和“商业阻力或缺乏理解”(41%)之前。

大数据

上面的图表显示,难以建立一个数据驱动的企业文化的阻碍是业务部门,而不是IT部门。因为数据整理、技术理解和数据分析方法等问题基本上没有多少应答者提及(小于30%)。

首席数据官(CDO),是企业具有数据驱动型的文化,或正在实现这一目标的关键指标。调查显示,财富1000强的企业近年来在这方面取得了进步。

大数据

虽然说,拥有CDO的公司的数量已经从2012年的12%提升到了2016年的60%。但是大多数(56%)受访者认为他们目前的角色是“防御性”的——主要是对监管和合规要求做出反应。

展望未来,受访者认为CDO应该变得更具“攻击性”——带头推动创新,打造数据文化,并将数据管理转变为企业资产。

这大概就是为什么大多数人(53.4%)认为,CDO应该向首席执行官(35.6%)或首席运营官(17.8%)汇报,而不是首席信息官(15.6%)。

NVP的调查还询问了受访者,除了大数据之外,还有什么会在未来10年里对自己的企业产生影响。人工智能和机器学习的排名靠前,这一点也不奇怪——无论是单选还是多选。

大数据

从欧洲的角度来看,我们研究了荷兰数据咨询公司 GoDataDriven的大数据调查 ,调查对象来自2016年荷兰的 大数据博览会参会人员 。共有315人,包括168名高管和147名经理。

当被问及成功推进大数据为企业的主要驱动力有哪些因素时,71.4%的受访者表示是“清晰的愿景”,其次是“管理层的支持”(51.2%)和“系统支持和流程支持”(40.1%)。

大数据

与上面的NewVantage调查一样,当涉及到大数据战略推进的阻碍时,“业务”因素似乎比“IT”问题更突出。

当然,这并不是说IT问题不重要。当被问及建立大型数据基础设施的挑战时,排名靠前的两种回答涉及数据质量和数据可用性

大数据

一旦有了足够多的高质量数据时,在企业以数据为驱动力的流程建立好之后,受访者将“大数据知识和数据科学的训练”列为最大的挑战,占比47.4%。

大数据

与NewVantage Partners一样,GoDataDriven也向受访者询问了人工智能的情况。尽管目前只有14.3%的人实际运用了深度学习和人工智能,但52%的人要么正在开发,要么计划在三年内运用深度学习和人工智能。

大数据

人工智能肯定是在公司的议程上,但显然是在早期阶段:在这一领域中,只有五分之一(21.5%)的受访者表示没有计划。

专家怎么看?

为了解大数据的运行状况,我们采访了Sumit Nijhawan。他是提供数据治理解决方案企业 Infogix 的首席执行官和总裁,他们对 2017年数据趋势进行了前瞻性分析 ,以下是采访中的一些关键观点。

“几乎所有的客户都有一个大数据计划,许多项目都进行了大量的投资。但他们所取得的进步,他们从投资中获得的价值,往往无法达到预期效果。”Nijhawan一开始就这样说道。

他补充说:“我们正在与客户合作的一些事情,我们认为是可以带来变革的。主要是数据治理、数据准备、自助服务和更小的数据湖(译者注:数据湖泊是包含下面两个特征的信息系统:a.可以保存大数据的并行系统;b.能够在数据不移动的情况下进行计算的系统)部署的结合。”

问:所以你会说,从大数据中获取商业洞察的主要瓶颈是“发现公司所拥有的有价值数据,并使其可供分析”?

“是的,大部分的关注点都是提供存储环境——hadoop,并让每个人都能将任何数据转储到其中。”这里要注意两件事情:首先,向Hadoop存储数据的目标是什么?其次,即使数据存在,但是无法管理,无法搜索,也无法挖掘,而且也没有办法使用数据去吸引消费者,来帮助企业获得价值。它非常依赖于技术,仍然需要技术人员来处理它。这并不是从这些投资中获取价值的最佳方式。”

问:这是否意味着“业务”与科技之间存在脱节——组织需要培养“数据文化”,让业务部门知道如何正确地分析数据,并产生商业洞察力?

“我们当然需要以数据驱动的企业文化。这并不是IT人员不想分享的东西。只是他们有这些工具,他们觉得自己做得很好,但他们并不知道分析数据最终的目标是什么。这就是为什么需要业务驱动了,否则很难实现任何有意义的事情。”

问:在许多组织中是否存在缺失的一环——首席数据官(CDO),谁能将业务部门连接到IT部门?

“这绝对是一个缺失的环节,但我不会说这只是一个人的问题。刚刚提到的“数据文化”指的是人、流程和技术,以及数据本身。这实际上是一个关于端到端的流程:这是如何从数据中获取所需数据的方式,也是如何处理数据的方式,更是如何交付数据的方式。这个端对端流程需要由业务负责人来发起,当然也可以是CDO。如今,首席数据官这个职位的问题在于,在许多企业中,它几乎都是一种官僚主义的立场:该CDO据称具有影响力,但最终却成为了供应商用来推销技术的人,而不是那些为了实现商业目标而在那里工作的人。”

问:当你与客户交谈时,目前哪些数据相关的技能最火?一些分析人士发现,企业对数据科学家的需求有所减弱。

“我认为需求正在减弱,但这并不是因为数据科学家的数量太多了。而是因为现有的数据科学家无法实现企业想要的价值。因此,问题就变成了:如果企业没有获得价值,那么招募更多的数据科学家有什么意义?为什么企业的运营人员、数据分析师不能更好的处理这些数据呢?

老实说,他们可以做到,因为数据科学家所解决的80%的问题都可以通过20%的算法来解决——而且这些算法都以易于使用的方式公开了,数据分析师和业务分析师可以将这些数据整合到运营和业务流程中。我认为这种情况正在发生,结果是对数据科学家的需求减少了。”

问:我们经常听到“自助式”分析,让更少的专家参与进来。你认为这个技术发展到什么程度了呢?

“我们对客户的做法是,我们首先会看到他们的数据湖项目在什么地方,然后告诉他们:也许你不需要花几个月和数百万美元来使用这些整合的开源技术。我们将为你提供一个完全自助服务的端到端设备,设备中所有东西都集成了,你所要做的就是使用这些数据来进行决策。你可以解雇你的业务人员,数据科学家,无论谁。这在市场上获得了很大的吸引力。

问:每个人都在谈论机器学习和人工智能,你认为它将会在大数据领域发挥作用吗?

“它已经存在了一段时间了,但是现在有很多关于它的新闻。就像我之前说过的那样,80%的问题可以通过20%的机器学习算法解决,比如切分、推荐、分类、回归和预测。我们关注的一个领域是大数据的质量,传统的数据质量一直都是关于精确匹配规则和重复规则等方面。现在数据量很高,人们向数据湖存储更多的数据,他们并不知道确切的规则是什么。相反,我们正在使用机器学习算法,比如切分和分类来寻找异常值。这就是机器学习已经增加了很多价值的地方——但同样的,你不需要非常成熟的数据科学家来做这件事。”

问:最后,你是否认为,随着自助工具的出现以及非专家、甚至“公民数据科学家”的参与,大数据领域正在进行民主化?

“我认为这是会发生的。这是对‘大数据’的投资能够持续、价值实现的唯一方式——没有其他选择。在IT和供应商领域,有足够多的人来推动这个问题,并找到能够实现这一目标的方法,可能还有三到五年的时间。在这期间,人们可能不会过多谈论“大数据”。相反,他们会谈论以自助服务方式交付的大数据的分析结果。”

前景

关于数据的各个方面还有很多,未来也会有更多的数据,但如果要经常把大数据转化为有价值的商业见解,企业还有很多工作要做。数据驱动型企业文化的建立以及数据科学家和工程师的增多(无论是从外部招募还是在内部培训),都将有助于推动这一过程,至少在短期内是如此。

正如 天文学家Clifford Stoll 所说:“数据不等于信息,信息不等于知识,知识不等于理解,理解不等于智慧。”

因此,数据科学家和工程师将需要从大量不同种类的数据中提取信息和知识,数据驱动的文化将确保提出正确的问题,从而让理解——甚至是智慧——到达企业的相关部门。

展望未来,自动化水平越来越高——尤其是在数据准备领域,以及自助服务分析工具的普及,将使专家之外的运营人员轻松获得从数据中得出的见解。

End.

来源:36大数据

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-09-13,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 PPV课数据科学社区 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
这家公司连续六年调研大企业数据变革,今年的结果喜忧参半
大数据文摘作品 编译:傅一洋、GAO Ning、魏子敏 大型企业到底如何看待数据及数据驱动? 从热潮到落地,大数据的力量有无受到区块链、人工智能等新浪潮的冲击? 在清华数据科学研究院联合大数据文摘发布的《顶级数据团队建设报告》中提到,数据化转型更多是一个至上而下的过程,企业高管对待数据的态度,对于一家公司的数据驱动文化建立至关重要。 围绕“数据”话题,NewVantage Partners已连续六年对全球各领域的大型企业高管如何看待数据进行调研。每年,调查回复率都在增长,而且据调查结果显示,如何有效数据利用
大数据文摘
2018/05/23
3080
CloudFlower | 2016数据科学家报告
我们的《2016数据科学家报告》是去年的努力的后续行动。我们的目的是调查有着多年经验和专业领域的专业数据科学家,从而了解他们的职业,以及他们每天的日常工作是怎样的。
IT阅读排行榜
2018/08/14
2830
CloudFlower | 2016数据科学家报告
《福布斯观察》分析大数据六大看点
《福布斯观察》分析大数据六大看点 从理念正确到行动正确路还很长 日前,在美国软件服务提供商天睿公司(Teradata)赞助下,《福布斯观察》联合麦肯锡咨询公司发布有关大数据分析状态的调查报告。调查对象是316位来自全球大型企业的高管。 该调查报告的六大看点 一是对大数据的炒作趋弱,大数据开始为企业争取竞争优势。调查显示,约90%的企业对大数据分析投资处于中等或较高水平。约三分之一的企业高管认为该项投资“非常重要”。最重要的是,约三分之二的受访者认为大数据分析举措已经对企业收入产生了可衡量的重大影响。59%
灯塔大数据
2018/04/10
5970
10个大数据误区,看看你中了几个?
刚接触大数据的朋友最容易产生以下误解,下面就让我把这些误解分别介绍一下,看看你有没有进入这些误区。
挖掘大数据
2018/01/16
6670
大数据领域在2016年都有哪些成果及趋势?听听专家怎么说
虽然各位专家的意见不尽相同,但从其发言中大约可以总结出一个共通点:大数据研究正在由前几年的新鲜技术变得越来越普及和商业化。同时,由于研究的向前推进,以数据为基础的人工智能、机器学习和物联网等其他各个领域也将会取得越来越大的成果。
IT阅读排行榜
2018/08/16
2640
认知应用:大数据的下个转折点
作者:Evangelos Simoudis 编者按:这篇文章是一个投资者对数据分析在过去25年的回顾。作者西蒙迪斯从投资者的角度讨论了数据分析的变革,认知应用的价值,以及最受风投关注的大数据核心领域。 在我的之前的一些博客中,我提到了生成认知的必要性和重要性,并提供了一个认知应用的例子。我始终认为认知应用是对于希望通过挖掘大数据从而改进决策和解决重要问题的公司的关键所在。为了更好的理解和领会开发这类应用的必要性,考虑在大数据领域正在发生什么,并且评估我们在商业智能系统上的经验,及它应该如何驱动我们理解认知应
大数据文摘
2018/05/22
3480
洞察|看行业观察家和技术专家对大数据在2017年的发展预测
又到了年终岁尾时,业界权威市场研究和咨询机构Ovum公司日前估计,大数据市场规模将从2016年的17亿美元增长到2020年的94亿美元。随着市场的增长,企业的挑战正在转变,对人们的技能需求正在改变,而
灯塔大数据
2018/04/08
5660
洞察|看行业观察家和技术专家对大数据在2017年的发展预测
【热点】大数据人才“求贤若渴”
在推进大数据应用的过程中,企业主要面临以下三方面的困难,一是认识上的不足,很多人并不知道大数据是什么,因此也就无法知道如何正确地使用大数据工具;二是投入上的不足,大数据的应用可能需要相当大的投入,一般的企业可能很难承受;三是大数据人才的匮乏将制约大数据应用的发展。 大数据相关人才的欠缺将会成为影响大数据市场发展的一个重要因素。据Gartner预测,到2015年,全球将新增440万个与大数据相关的工作岗位,且会有25%的组织设立首席数据官职位。大数据的相关职位需要的是复合型人才,能够对数学、统
小莹莹
2018/04/20
5870
认知应用:大数据的下个转折点
导读:从投资者的角度,西蒙迪斯将讨论数据分析的变革,认知应用的价值,以及最受风投关注的大数据核心领域。 在我的之前的一些博客中,我提到了生成认知的必要性和重要性,并提供了一个认知应用的例子。我始终认为认知应用是对于希望通过挖掘大数据从而改进决策和解决重要问题的公司的关键所在。为了更好的理解和领会开发这类应用的必要性,考虑在大数据领域正在发生什么,并且评估我们在商业智能系统上的经验,及它应该如何驱动我们理解认知应用是十分重要的。 由于我认为认知应用是大数据发展的下一个转折(参见最近使用IBM Watson平
灯塔大数据
2018/04/09
6080
认知应用:大数据的下个转折点
【业界】对人工智能、大数据和分析领域在2018年的九大预测
弗雷斯特研究公司(Forrester Research)的一份最新报告《预言2018: AI的蜜月期即将结束》预测:预计到2018年,企业将最终意识到人工智能将在企业中工作,并能够正确地规划、部署和管
AiTechYun
2018/03/05
8630
【业界】对人工智能、大数据和分析领域在2018年的九大预测
2017 数据科学届的六大预测!
如今数据给业务增长和利润创造了前所未有的机会。近十年来,随着先进的数据技术和出众的分析工具的出现,使得企业经营者可以从他们的数据资产获得众多利润,但他们中大部分才刚刚涉及到数据潜力的皮毛。数据科学正使得企业能够前所未有的利用其潜力。 McKinsey report 在2013年发布的一份报告中预测,全球商界会在未来十年中面临数据科学专业人员的 严重短缺,尤其是擅长从大量的静态和动态的(实时)数据中获取竞争情报的 “150万名分析师”。 随着这个的预测的成真,企业对数据管理的日益重视以及高等教育机构是使整个
CDA数据分析师
2018/02/26
7040
2019:商业智能的未来就在这里
本篇文章汇总了国外2018年商业智能领域多份权威报告,将普遍受到认同的核心观点进行梳理,包含AI、移动BI、自助式BI、云部署、数据治理、增强型BI等多个方向,力求为读者呈现清晰的2019年商业智能蓝图。
莫邪
2019/01/15
1.4K0
2019:商业智能的未来就在这里
最新数据分析与商业智能趋势前瞻
2019年,​​商业智能​​(BI)解决方案的核心竞争力,仍将取决于其是否具备使手动工作量降到最低的高级分析功能。《商业应用研究中心(BARC)2018商业智能调查》显示,全球BI服务市场预计将发生重大的技术变革。BI用户在2019年可以期待的主要技术举措是​云BI部署​,​移动BI​,​机器学习​和​由深度学习支持的智能分析​,以及​严格的数据隐私和安全法规​。
张哥编程
2024/12/19
2310
最新数据分析与商业智能趋势前瞻
观点 | 重新思考机器学习:大数据消耗已无必要
翻译 | AI科技大本营(rgznai100) 参与 | Shawn,焦燕 导读 机器学习炒了这么这么多年,为什么我们还没看到企业有开发出任何这方面应用?本文会告诉你它难在哪里,并带你了解机器学习工程师这个神秘的职业。 你以为你有了大数据,就能在机器学习界高枕无忧?简直NAIVE 近几年,机器学习在人工智能界迅速走红,几乎随处可见它的身影,人们甚至开始神化这一技术:基于大数据的机器学习无所不能。 但是,机器学习炒了这么多年,为什么我们仍未看到企业开发出任何这方面应用? 本文告诉我们应该重新思考机器学习:
AI科技大本营
2018/04/26
6590
观点 | 重新思考机器学习:大数据消耗已无必要
企业大数据应用体系优化与转型
2009年,Gartner发布2010年全球Top10技术趋势,高级分析取代上一年列第二位的BI,成为2010年第二位新技术;2011年,麦肯锡全球研究院(MGI)发布了报告《大数据:创新、竞争和生产力的下一个前沿阵地》,预测高级分析这一职位对于数据科学家人才的需求缺口到2018年将达到14万~19万。从此,数据科学家成为最抢手的职业,以大数据为花名的数据科学得到了全球从政府到各行各业的青睐,并因此得以持续迅猛发展。
灯塔大数据
2020/05/26
7540
企业大数据应用体系优化与转型
快看,大数据发展的五个新趋势!
企鹅号小编
2018/01/09
7060
【关注】2016年大数据领域预测:Spark淘汰MapReduce,拯救Hadoop
2016 年大数据领域会发生什么情况?考虑到如今在深层神经网络和规范性分析方面取得的进展,你可能觉得这个问题很好回答。而实际上,来自业界的大数据预测大不相同,本文精选出了最值得关注的 33 个预测,为您开启未知的 2016! 数据平民崛起 甲骨文公司预测一种新型用户:数据平民(Data Civilian)会崛起。该公司称:“虽然复杂的数据统计可能仍局限于数据科学家,但数据驱动的决策不会是这样。在未来一年,更简单的大数据发现工具让业务分析员可以寻找企业 Hadoop 集群中的数据集,将它们重新做成新的混搭组合
小莹莹
2018/04/23
7230
【关注】2016年大数据领域预测:Spark淘汰MapReduce,拯救Hadoop
人工智能影响企业运行的四大发现
      作者: Narrative Science       译者:机器之心 人工智能并非新鲜事,它数十年前就已经存在了。但人工智能技术由于数据的扩增以及在存储、追踪以及分析技术上的投资,近来才有所进展。例如,仅 2014 - 2015 年间,部署或者使用数据驱动项目的公司增加了 125%,企业花费在此的金额平均为 1380 万美金。市场情报公司 IDC 也表示,到 2019 年,大数据技术与服务市场将达到 486 亿美元。 越来越容易获取的大量丰富数据结合与“智能机器”
腾讯研究院
2018/02/01
5910
洞察|2017年大数据领域的十大趋势
“大数据”不再只是一个流行词。弗雷斯特研究公司的研究人员发现,“2016年,近40%的公司在实施大数据技术,并且扩大了采用力度。另有30%的公司计划在未来12个月内采用大数据技术。” 类似的,NewVantage Partners的《2016年大数据高管调查》发现,如今62.5%的公司在生产环境中至少有一个大数据项目,只有5.4%的企业组织没有计划或开展大数据项目。 研究人员表示,采用大数据技术的势头不太可能很快就减慢。IDC主管分析和信息管理的集团副总裁丹·维塞特(Dan Vesset)说:“出现的大量
灯塔大数据
2018/04/08
6450
洞察|2017年大数据领域的十大趋势
掌握大数据的十大发展趋势,不再盲目学习大数据知识
佛瑞斯特研究公司(Forrester)的研究人员发现,2016年,近40%的公司正在实施和扩展大数据技术应用,另有30%的公司计划在未来12个月内采用大数据技术。2016年NewVantage Partners的大数据管理调查发现,62.5%的公司现在至少有一个大数据项目投入生产,只有5.4%的公司没有大数据应用计划,或者是没有正在进行的大数据项目。 研究人员称,会有越来越多的公司加速采用大数据技术。互联网数据中心(IDC)预测,到2020年大数据和分析技术市场,将从今年的1301亿美元增加至2030亿美
灯塔大数据
2018/04/08
7550
掌握大数据的十大发展趋势,不再盲目学习大数据知识
推荐阅读
相关推荐
这家公司连续六年调研大企业数据变革,今年的结果喜忧参半
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档