前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >国际机器人与自动化大会重点推介的20种创新机器人技术

国际机器人与自动化大会重点推介的20种创新机器人技术

作者头像
机器人网
发布于 2018-04-23 07:21:51
发布于 2018-04-23 07:21:51
1.2K0
举报
文章被收录于专栏:机器人网机器人网

最近在瑞典斯德哥尔摩召开的“国际机器人与自动化大会”(ICRA)向世人展示了该领域最新的设计和创意理念,从飞行运输、环保检测、工业制造到休闲生活娱乐,形形色色的机器人几乎覆盖了生产生活的各个领域。

不过,外行看热闹,内行看门道。美国电气与电子工程师协会(IEEEE)《光谱》杂志从专业角度,介绍了会展中的20种机器人技术,设计重点在于以创新方案解决目前机器人应用中的一些难题,主要集中在控制、传感、驱动、操作、抓握、义肢、人形机平衡、外骨骼、飞行取物、人工智能虚拟现实、组织微型机器人团队等方面。

1.以视觉触须传感来校准制图——仿生触须机器人

仿生触须机器人bellabot

对于那些要在现实世界中长时间工作的触觉机器人系统来说,能自动纠错校准是其保持长期稳定的前提,Bellabot就是这类机器人。它像个由许多“眼球”组成的大“复眼”,每个“眼球”伸出一根仿生触须,由电动人造肌肉驱动,通过摄像机提供视觉错误反馈,还有一个标准的工业机器人操作台。

研究人员给它安装了模拟小脑功能的适应性过滤模型,通过视觉触须传感图来校准操作误差,提高操纵机器人定向运动的精确度。操作容错度或传感阵列损害都可能造成图像缺陷,Bellabot能通过学习算法不断调整传感图中的缺陷。

2. 筋线驱动结构灵活——弹性仿人类脊椎

人类脊椎由韧带、椎间盘和肌肉来保持稳定性,强度高且转动灵活,模仿这样的性能有利于机器人在未知环境中保持机械稳定性。为此,研究人员提出一种基于有机硅和筋线来驱动的连续机制。

这种机制可用作机器人的颈部或躯干,更多集中在颈部。为了验证各项功能,研究人员设计了一个多自由度样机,通过弹性筋线模拟人类颈部运动,有助于将来设计机器人颈椎,还可作为一种测试平台,开发类似机械的控制方案。

3. 共同承担重负荷——微型机器人团队

微型多足机器人μtug

这是个由许多小机器人组成的团队。研究人员提出了一种简单的统计模型,能预测团队的总体最大拉力,估算每个小机器昆虫与地面互动的功能总和,比如在地面跑或走。

他们通过实验检测了三个团队,一种是以刚毛推进的小爬虫,一种是会慢走和快跑的6脚小昆虫,还有一种通过两个轮子运动的17克重微型多足机器人μTug,它们能共同承担重负荷。比如每个μTug能在自身限制内运作,6个一组产生的拉力就能超过200牛顿。

4. 筋线驱动抓握多种物体——可穿戴聚合物手套

这是一种由聚合物材料制造、筋线驱动的可穿戴机器手套,目前可套在拇指、食指、中指和手腕上,也叫做外手套体(Exo-Glove Poly)。在设计和制造上,这种外手套体还能根据不同人手的大小做调整,保护使用者不受伤,而且透气性好,能嵌入特氟龙管来装置线路。

它有两个马达,一个在拇指,另一个在食指或中指。研究人员让一个健康志愿者做抓握实验,测试手套的机械性能,通过连接型压力传感器和驱动机制,能抓握不同形状和大小的物体。

5. 能与环境互动保持平衡——有腿机器人TORO

有腿机器人toro

有腿的仿人机器人要能执行多种任务。它们要能与环境互动,遇到外部障碍时能扭转身体,同时还要保持稳定协调的平衡。

为此,研究人员提出一种新的控制方法,把多级别控制和平衡结合。他们在仿人机器人TORO身上模拟了这种方法。为了达到恰当平衡,先把所有的任务力/力矩分配到终端受动器,然后按照任务级别映射到连接空间。

6. 多模式飞行取物——带自动吸盘的飞行器

研究人员给这款飞行机器人安装了他们的专利技术——自动紧密吸盘,同时考虑了负载真空泵等因素,解决了多模式飞行取物的难题。利用吸附原理和局部接触拉力,以被动驱动的方式抓取不同形状的物体。这种自动吸附“抓手”还能用一个或多个吸盘,让飞行器在抓取携带物体方面变得“多才多艺”,比如先抓住一个不放,然后再抓第二个。

研究人员指出,飞行器一般对重量限制非常敏感,他们用了微泵真空发生器,但这给系统带来了新的挑战。为了克服这些难题,他们测试了吸盘设计有无任何漏缝、驱动力、最大抓握力,还测试了每个“抓手”零件的性能、飞行器把力道传递给吸盘的能力、系统吸附倾斜表面的能力,最后测试了飞行器用多个吸盘抓取多个物体的能力。

7. 能自行移动的“松树”——TransHumUs移动机器平台

能自行移动的“松树”(左小图为transhumus移动机器平台)

TransHumUs出现在最近举行的第56届威尼斯双年展上,是游荡在法国馆和绿堡公园的三棵会动的松树,原意是将树木从其固定的根部释放,展现自由生命的力量。

TransHumUs证明了先进的移动机器人技术还能对当代艺术发展做出贡献。在此次机器人大会上,研究人员从技术角度揭示了如何让松树自由移动。其难点在于设计初始的机器平台,让树木能根据自身的新陈代谢移动。

8. 能还原阴影区隐藏的形状——新型场景工具

用机器人来进行移动绘图时,要生成交互式静态地图会受到临时出现的物体干扰,如过往车辆、行人、自行车等。对此,研究人员的解决方案是利用一系列激光点云,填充移动物体在现场造成的浓密阴影空缺。对于那种资源受限,只允许单向映射绘图的特殊地方,这种场景工具非常有价值。

研究人员利用一种复杂的专业TSDF函数在三维像素网格中处理激光扫描,然后用总变量(TV)调整因子结合一种专业术语的数据,插入丢失的表面图形。研究人员称,这项技术能填充约20平方米被移动物体掩盖而丢失的面积,重建后误差范围为5.64到9.24厘米。

9. 指尖上的类传感器——多手指的集成控制机器手臂

虽然目前这个机器手臂只有3根手指,但每个手指能独立运动,极其灵活。研究人员利用装在指尖的类传感器,设计了一种集成控制的机器手臂,将手指、手和手臂结合成一个控制整体,能用抓取目标给指尖定位,迅速控制整个手臂的位置和姿势。

当手的位置和姿势出错,无法只通过指尖运动控制时,可以通过手臂来调整错误,变得更平衡后跟随指尖抓取目标。这种设计可防止抓取失败的情况,比如抓物体时却把目标碰到一边,或者把物体碰翻在地。控制手臂和手还能矫正几厘米的位置误差,比如放在工作台上的某个物体,其位置相对于机器手臂是不确定的,可以装上像Kinect那样廉价的光学传感器,只需提供较粗略的图像数据,就能让它抓住目标。

10. 逆向运动学加六自由度新设计——灵活如蛇的手持机器臂

这种手持机器臂是一种新的6-DoF(六自由度)电缆驱动任务操作杆。利用一对结合的筋腱,让机器臂的运动模式基本实现了最优化,拥有最大的速度和最大的空间配置,同时减小了手臂的总体质量。

逆向运动学方案是把6-DoF问题分成了2个3-DoF问题,逐级分解再把结果合并,展示的机器臂有一个关节是冗余的,其实是一种5-DoF方案。这种空间挖掘式设计最终使整体结构强度最大,而连接关节质量最小。这种设计还能改善非手持式筋线操作杆,把每个自由度所需的驱动器减少到1个。它可用于环路控制,帮机器人更容易接近目标。

11.轻质低能耗控制板和弹簧驱动器——最舒适的外骨骼

在外骨骼设备中,控制板能提高弹簧或驱动器的性能。研究人员设计了一种质量轻、耗电少的控制板,用来控制外骨骼脚踝部位的弹簧。这种控制板是两张薄薄的电极片,涂有一层介质材料,通过静电吸附在一起。每片仅重1.5克,可承受100牛顿的力,能在不到30毫秒内改变状态。

研究人员把控制板和弹簧串联在一起,每个控制弹簧重26克,再将多个弹簧并联,可以分别调整它们的硬度。通过调整弹簧数量,系统可以产生6个级别的硬度,力度从14到501牛顿。

12. 差异给料控制边角匹配——会自动调整布料的缝纫机

这是一种用在自动缝纫系统中的新型控制方法,能独立控制缝纫单位的给料,帮助缝纫机匹配布料边角部分,适应材料形状的不确定和长度变化。利用这种控制方法,可以通过端点检测,独立控制上下两部分的给料速度,使两块布料保持对等。研究人员同时还提出了不同的矫正误差方案,并进行了实验。

13. 与虚拟现实结合——空间引导定位机器臂

这是一款利用虚拟现实(VR)或增强现实(AR)眼镜执行定位操作的解决方案。在这一设计中,研究人员解决了如何提供信息反馈,引导手持机器臂完成空间定位的任务。把前面介绍的6-DoF或5-DoF手持式机器臂和VR或AR立体眼镜结合,眼镜视域中会出现一个箭头标记,指示人工操作杆和机器臂应该到达的位置,通过比较实验,用机器臂定位操作比人工操作杆效果更好。

14. 通过五万次实验学习挑选物品——人工智能管理

这款人工智能模型利用机器学习算法不断探索人类标签数据库,通过5万次抓取实验,训练神经网络(CNN)预测抓取位置,选择抓取特定的目标物体。

15. 闭路控制的接触变形胶体——新型触觉变形表面

在以往用于触觉和柔软机器人中的颗粒胶体设备中,形状变化通常由人来直接控制,是开放式的。研究人员展示的新型触觉胶体表面,由12块排列在一起的胶体单位组成,能统一改变形状和力学性质。他们设计了一种新算法,在这种触觉胶体表面上测试了三种驱动命令,并通过传感器提供的深度图,监视闭路控制的形状变化。

16. “向日葵”式太阳能电池板——双轴机器人平台SoRo-Track

SoRo-Track模型是一种双轴的柔软机器人驱动器(SRA),可以像向日葵那样随阳光改变方向,作为一种自动调节的光伏太阳能电池支持平台,并能与建筑物结合在一起。

研究人员指出,与传统驱动器,如直流马达、水压发动机或气压活塞相比,SRA系统越来越受欢迎,其品质柔软、形态简单、功率重量比高、抗干扰性强,能适应外部振动和不利环境条件,而且设计灵活,容易调节,成本较低。

17. 结合三个旋转扫描镜的旋镜3——超广角高速监控器

旋转镜是一种新型光学高速监控器,克服了以往高速监控器视野范围(小于60°)的限制。最新一款称为旋镜3,由3个自动旋转镜组成,能实现超广角监控,理论视野范围达到360°。

根据这一机制开发的旋镜3样机,平面方向的实际视野范围超过260°,能在10毫秒内快速反应。此外,样机结合了1000英尺/秒的高速视觉系统,能实现高速跟踪监控。研究人员专门开发了视觉跟踪算法,能毫不费力地跟踪抓拍到被两个人打来打去的乒乓球。

18. 上下盘旋、翻滚自旋样样行——全方位飞行器模型

能上下盘旋、翻滚自旋的全方位飞行器模型

研究人员通过静态力和力矩分析,设计了一种6个自由度的新式飞行器,外观是一个立方体框架,内部合理地排布着8个螺旋桨,使飞行器的灵活度达到最大。它不仅能在空中平稳地上下飞行,前后旋转,还能自己前后翻滚,左右自旋。

19. 五自由度的磁控微型机器人——旋转永磁体控制平台

通过电磁驱动系统控制的微型机器人,在生物医疗和微流设备中有着广阔应用前景。研究人员设计了一种磁控装置样机,由8个较大的旋转永磁体组成阵列,能以5个自由度精确遥控简单的无绳微磁体,精确程度达到亚毫米级。在演示中,这一系统能产生任意方向的场和梯度场,控制250微米的微磁体按任务路径运动,精确度达到39微米。

20.夸张动作逗人发笑——喜剧演员机器人

这种机器人能做出滑稽夸张的动作,逗人发笑,有望用来预防或治疗精神疾病。研究人员指出,笑很难成为一种有效的医疗方法,因为人们至今尚未完全理解笑的机制。非语言的滑稽表演可能超越文化和语言,因此逗笑机器人有助于揭示人们为何会发笑。

研究人员对喜剧演员的夸张动作进行了专门计算,提出一种人形手臂设计,拥有灵活的轻质关节,通过双发动机驱动,能在广阔空间迅速挥舞运动。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2016-06-02,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 机器人网 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
搞它!!!Linux系统LVM原理及磁盘配额(PV、VG、LV、PE的关系,手把手教你,嘴对嘴的传达)
当你在使用linux系统时,为了满足当时的工作需要你装了一个100G的磁盘,但是你发现随着公司的发展,和需要储存数据的空间的增大,你会不会重新买些磁盘给装到机器上去呢?每装一次重新分配一次磁盘,就复制一次数据,那这样对于工作的你,是不是非常的麻烦?如果我们用LVM就能解决这类的磁盘管理问题。
不吃小白菜
2020/09/03
6.7K0
搞它!!!Linux系统LVM原理及磁盘配额(PV、VG、LV、PE的关系,手把手教你,嘴对嘴的传达)
Centos对home目录进行扩容
-- 通过df -h 查看,/home目录大小不足。通过增加一块硬盘,扩大/home大小。
jwangkun
2022/01/09
6.5K0
LVM添加硬盘并扩容至已有分区
LVM是 Logical Volume Manager(逻辑卷管理)的简写,它是Linux环境下对磁盘分区进行管理的一种机制。LVM将一个或多个磁盘分区(PV)虚拟为一个卷组(VG),相当于一个大的硬盘,我们可以在上面划分一些逻辑卷(LV)。当卷组的空间不够使用时,可以将新的磁盘分区加入进来。我们还可以从卷组剩余空间上划分一些空间给空间不够用的逻辑卷使用。
dogfei
2020/07/31
26.7K2
LVM添加硬盘并扩容至已有分区
通过VG方式给CentOS 7的root分区扩容
我有个VPS,因为不能自己安装系统,每次都得提交工单让他们帮助安装,而他们使用的也是模板安装,系统盘只给20G,/dev/mapper/centos-root分区只有8.5G,系统刚安装完一切都还好,大概只占用了不到2G,可是日积月累,这个分区就会吃满。那有没有办法在后期给/dev/mapper/centos-root分区扩展呢?最好是无痛的,答案当然是:有。 这个是有前提条件的,那就是你还得有一块数据盘,当然,我的VPS是有格外有一块150G的数据盘了,我不想把整块硬盘全加到/dev/mapper/centos-root分区,所以,先把这个数据盘分区,比如我要拿出30G加到root分区,那么我就需要把数据盘分成30G和120G这两个区,之后把30G的分区加到root上。下面是简单的步骤了: 1.先看下各盘的占用情况:
徐大嘴
2019/03/21
2.7K0
linux_lvm xfs磁盘化分及扩容
一、linux_lvm磁盘化分 1、新添加的硬盘,fdisk -l 可以看到 sdb 新的未分配的分区。
拓荒者
2019/08/22
5.8K0
linux_lvm xfs磁盘化分及扩容
Linux根目录扩容(lvm)
Linux根目录磁盘空间不够用了,当修改了虚拟机模版增加磁盘大小或者插入了一块新硬盘,但是发现系统里的大小还是没改变。 产生的原因是没有给磁盘格式化,没有增加分区。
用户9949933
2023/02/24
7.1K0
CentOS7默认安装的/home中转移空间到根目录/ - LVM操作简明教程
转自 http://blog.csdn.net/evandeng2009/article/details/49814097
@凌晨
2020/05/28
3K0
CentOS7默认安装的/home中转移空间到根目录/ - LVM操作简明教程
Linux下对lvm逻辑卷分区大小的调整(针对xfs和ext4不同文件系统)
当我们在安装系统的时候,由于没有合理分配分区空间,在后续维护过程中,发现有些分区空间不够使用,而有的分区空间却有很多剩余空间。如果这些分区在装系统的时候使用了lvm(前提是这些分区要是lvm逻辑卷分区),那么就可以轻松进行扩容或缩容!不同文件系统类型所对应的创建、检查、调整命令不同,下面就针对xfs和ext2/3/4文件系统的lvm分区空间的扩容和缩容的操作做一记录: ----------------------------------------------------------------------
洗尽了浮华
2018/01/22
4.3K0
CentOS7.x系统根目录分区扩容
说明:系统版本为 Linux version 3.10.0-327.el7.x86_64
拓荒者
2019/08/22
2K0
Linux 温习(六): LVM 磁盘
逻辑卷管理器(Logical volume Manager)是 Linux 系统用于对硬盘分区进行管理的一种机制,理论性较强,其创建初衷是为了解决硬盘设备在创建分区后不易修改分区大小的缺陷。尽管对传统的硬盘分区进行强制扩容或缩容从理论上来讲是可行的,但是却可能造成数据的丢失。而 LVM 技术是在硬盘分区和文件系统之间添加了一个逻辑层,它提供了一个抽象的卷组,可以把多块硬盘进行卷组合并。这样一来,用户不必关心物理硬盘设备的低层架构和布局,就可以实现对硬盘分区的动态调整。
高久峰
2023/09/18
7680
Linux 温习(六): LVM 磁盘
Linux多块物理磁盘做LVM
最近刚刚跳槽,新单位同事问了我个问题,突然把我问懵了,因为好久没有接触底层磁盘了,于是做了以下的实验。
Bob hadoop
2021/02/27
5.3K0
Linux多块物理磁盘做LVM
Linux 温习(六): LVM 磁盘
逻辑卷管理器(Logical volume Manager)是 Linux 系统用于对硬盘分区进行管理的一种机制,理论性较强,其创建初衷是为了解决硬盘设备在创建分区后不易修改分区大小的缺陷。尽管对传统的硬盘分区进行强制扩容或缩容从理论上来讲是可行的,但是却可能造成数据的丢失。而 LVM 技术是在硬盘分区和文件系统之间添加了一个逻辑层,它提供了一个抽象的卷组,可以把多块硬盘进行卷组合并。这样一来,用户不必关心物理硬盘设备的低层架构和布局,就可以实现对硬盘分区的动态调整。
陈大剩博客
2023/02/17
3.4K0
Linux 温习(六): LVM 磁盘
VMware虚拟机中Linux系统磁盘空间扩容实战
 平常在VMware上创建Linux系统虚拟机的时候,往往当时不会给太多的磁盘空间,在后期的使用过程中经常会遇到磁盘空间不足的情况,需要对Linux系统扩展磁盘空间。
非著名运维
2022/06/22
3.2K0
VMware虚拟机中Linux系统磁盘空间扩容实战
VM虚拟机扩容操作
之前在VMware上虚拟出了几个Centos搭建环境,随手分了80G给每台虚拟机,可是随着业务的发展,我发现虚拟机的磁盘空间不够了。这里记录下如何操作!
summerking
2022/09/16
1.3K0
VM虚拟机扩容操作
Centos7下LVM对文件系统进行在线扩容
今天在测试一台vps,结果他家的模板系统分区太不好了(就不喷了),本来想让人家客服看看处理下,结果人家直接来了一句自己分。所以才有了这篇笔记,顺便也可以复习下LVM。 硬盘总空间是30G的SSD,根分区给了10G,剩下的20G空间挂载到了/home下。 [root@MyCloudServer ~]# df -h Filesystem                   Size  Used Avail Use% Mounted on /dev/mapper/centos-root      8.5G  93
行 者
2018/03/26
2.2K0
磁盘扩容
磁盘扩容 磁盘分区 parted /dev/sdb # GPT就是GRUB分区表,如果是MBR,最大支持2T分区 mktable gpt # 创建一个 2G 的磁盘空间 mkpart primary 0K 2048G # 给1好分区更改为 lvm 格式 toggle 1 lvm centos7 xfs 文件系统 lvm 扩展 因为Centos7默认文件系统是xfs文件系统类型,在xfs文件系统中,只能增大分区而不能减小。 Centos6,Centos5系统都是ext4,ext3文件系统。所以操作方法有一点
张琳兮
2020/08/01
2.8K0
虚拟机lvm 扩容「建议收藏」
1.先在Vmware上,把虚拟机硬盘做扩展,如果有快照存在,磁盘可能是不可编辑状态,先删除快照后再扩展。
全栈程序员站长
2022/08/28
1.2K0
Lvm管理
逻辑卷管理LVM(Logical Volume Manager)是Linux系统的一种管理硬盘分区机制,具有动态管理硬盘的能力。本文介绍了如何通过LVM在多块云盘上创建一个逻辑卷,适用于Linux实例。
mikelLam
2022/10/31
9330
Linux基础(day16)
(若系统中没做lvm操作,但是 df -h 查看时会发现存在lvm文件,那是因为在安装系统的时候,未设置手动分区,系统就默认以lvm的形式分区了) 4.10/4.11/4.12 lvm讲解 LVM讲解
运维小白
2018/02/06
1.7K0
Linux基础(day16)
Linux磁盘管理之LVM快速入门配置
描述:LVM——Logical Volume Manager就是动态卷管理在Linux2.4内核以上实现的磁盘管理技术,它可以将多个硬盘和硬盘分区做成一个逻辑卷,并把这个逻辑卷作为一个整体来统一管理,动态对分区进行扩缩空间大小,安全快捷方便管理。
全栈工程师修炼指南
2022/09/28
1.9K0
Linux磁盘管理之LVM快速入门配置
相关推荐
搞它!!!Linux系统LVM原理及磁盘配额(PV、VG、LV、PE的关系,手把手教你,嘴对嘴的传达)
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档