前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >【案例】Linkedin如何用大数据变现

【案例】Linkedin如何用大数据变现

作者头像
小莹莹
发布于 2018-04-20 09:15:10
发布于 2018-04-20 09:15:10
9530
举报

导读:对Linkedin商业数据分析部门而言,大数据分析不是什么高高在上、复杂枯燥的工作,而是一门化繁为简、高效实用的艺术。

大数据时代,商业数据分析部门对一个公司的重要意义不言而喻。目前,很多公司的数据分析部门采用的都是“分析放在报表之上”的分析方法,即每天产出非常繁琐、复杂、海量、事无巨细的分析报告,但这些分析报告的可理解性和可执行性并不强。而Linkedin作为一个典型的数据驱动的公司,在进行数据分析时却反其道而行之,采用了“报表放在分析之上”的方法,化繁为简,以最快的速度在大数据金矿中发掘出最多的商业价值。

据悉,自2011年商业数据分析部成立以来,Linkedin的销售收入已经增长了20倍,不仅如此,整个公司的各个环节都实现了数据驱动的自动快速的商业决策。近日,钛媒体驻美记者也独家专访了Linkedin商业数据分析部门第一位员工及部门总监Simon Zhang,对Simon而言,商业数据分析不是什么高高在上、复杂枯燥的工作,而是一门化繁为简、高效实用的艺术。

数据分析结构:从金字塔到菱形到球形

Linkedin无疑是一个建立在数据基础之上的公司,截至记者发稿时,其用户即将超过3.4亿人,庞大的用户规模也产生了海量的数据,这其中包括行为数据、身份数据、社交数据以及内容数据等,如何从这些海量的数据中挖掘出用户痛点从而推出适销对路的产品和服务是Linkedin商业模式的关键。

成立于2011年3月21日的Linkedin商业数据分析部门的主要功能正是通过数据分析支撑公司其他关键部门进行各种决策。目前,商业数据分析部门的70名员工可以支撑服务于全公司4500名以上的员工。

“自成立以来,每天,销售、运营、客户服务、工程、市场、产品等各个部门的员工都会向我们部门提出各种各样的问题,比如,用户对我们的主页面是否满意?我想推销某款人力资源产品,我该推销给哪个公司?等等。最初我们都是通过人工手动进行数据分析,但这样效率实在是太慢了,于是我们开始思考改革以往的数据分析的方法。”Simon表示。

和大部分公司一样,Linkedin最初采用的是金字塔形的数据分析架构,从下到上依次是:了解相关业务与产品;有目的地采集有用的数据;深度了解数据分析工具原理以及如何使用;数据分析;得出结论、作出决策。

而这几个步骤中,区分出不同水准的数据分析的关键点在于中间两个步骤。“了解你所使用的数据分析工具方面,目前很多分析人员不是太重视,因为他们认为编写数据分析工具是传统IT部门的事情,但实际上,能否深度地了解分析工具的运作原理对于你能不能充分正确地使用这个工具很关键,也是区别好坏分析人员的关键。

另一个关键点在于数据分析这一过程本身,在我多年的工作经验中,业界一致认为,好的数据分析都是善于化繁为简的,好的数据分析人员善于用最简单明了的方式呈现最核心的价值。”Simon告诉钛媒体。

正因如此,在人人都在讨论大数据的时代,Linkedin对数据分析的最重要的两个要求就是“速度要快并且产生价值”。

只有速度够快才能形成规模化,才能产生规模的价值,而传统的金字塔型的数据分析架构使得分析人员在金字塔的中下段部分花费了过长的时间(85%-95%的时间),因此,2010年底至2011年初,Linkedin开始考虑将金字塔结构变为菱形结构。

“变成菱形结构的主要方法就是,不断创造自动化的工具代替传统金字塔底层的工作,将金字塔所有可能的环节尤其是中下部分的工作让机器自动完成,” Simon表示,“特别需要注意的是,金字塔变成菱形是一个不断迭代的过程,每一个变成菱形的数据分析结构,我们会将其再次变成金字塔形,然后再次优化变为菱形,如果说每一个菱形面积仅有原来的金字塔面积的一半的话,经过多次转化和迭代之后,整个数据分析的效率将被大大提升。”

据悉,在将金字塔形的数据分析结构变为菱形后,Linkedin商业数据分析部门再次对其进行了优化,将菱形结构变成球形结构,形成闭环,“目前我们商业分析部门已经开发出了几百个面向内部员工的闭环的球形产品,每一个产品都可以实现从产品到数据收集到分析到决策的一个闭环流程,这也就意味着每一个球形产品不仅可以实现高效的分析和决策,还能形成闭环、自动升级和迭代”。

(分析决策:从三个月到一分钟)

对于大数据分析,Linkedin认为效率是第一准则,用最短的时间产生真正的价值比面面俱到的分析更加重要。而通过商业数据部门近几年开发出的几百个面向内部使用的产品,Linkedin所有部门的员工都可以真真切切地感受到工作效率的飞速提升。

案例一:市场和销售团队支撑产品——Merlin

对于Linkedin的每一个产品销售人员,当他接到销售某一款产品的任务时,他至少会产生以下几个主要疑问:

1.我该把这款产品卖给哪家公司? 2.我应该联系谁?谁有采购的决定权? 3.我应该怎样去联系这个人? 4.我该派谁去联系这个人?是我自己去合适还是我的某位同事去更适合? 5.到这家公司后我该讲一个怎样的故事打动客户?

在传统的人工手动的数据分析模式下,对于某一款特定的产品,其销售人员想搞清楚以上几个问题并作出一个见客户时使用的销售PPT至少需要2周到2个月的时间,而今天,通过Linkedin市场和销售团队支撑产品Merlin,销售人员仅需要登陆系统,输入自己的名字以及需要销售的产品名称等基本信息,Merlin可以自动收集销售人员的背景数据和人脉网络数据,从而快速生成较为精准的销售方案,从输入基本信息到销售方案的生成仅需要一分钟的时间,销售人员甚至可以得到系统为他量身定制的销售PPT。

“传统进行2个月的调研也未必可以得到精准的方案,而目前仅需要一分钟的时间,我们最近还把Merlin安装到了销售人员的手机上,实时对销售人员进行支撑,目前Linkedin一共有3000多人在使用Merlin系统,”Simon表示,“销售方案的自动化生成也使得我们在招聘销售人员时变得简单,不需要过多的培训便可迅速上岗。”

案例二:产品测试团队支撑产品——A/B Testing System

对于Linkedin测试部门而言,在传统环境下,其想要完成一项测试工作起码需要3个月时间,而目前,通过A/B Testing System,仅需要一分钟的时间便可以从每一项测试的650个指针中抓取出几个关键指标,提出改进意见,从而以最高的效率对测试产品进行改进。

“传统环境下,十几个人3个月才能完成的测试工作,目前仅需要一分钟,目前A/B Testing System每天可以支撑2000个内部测试,每一个测试追踪650个以上的指针,通过抽取最关键指标的方式对产品提出改进意见,”Simon表示,“我们不追求尽善尽美,我们只追求每天进步一点点,事实上,只要每天可以在原有基础上进步1%,一年之后的进步成果将是惊人的。”

案例三:客户服务团队支撑产品——Voices

对Linkedin客服部门而言,如何衡量用户满意度一直以来都是一个难题,因为通常客服人员们只能从用户留言等非结构化的数据中收集到一些信息,但如何将松散凌乱的非结构化数据变为可衡量改进的结构化数据一直没有得以解决。

直到Linkedin商业数据分析部门推出客户服务团队支撑产品——Voices,传统无法结构化的数据仅需要一分钟便可生成分析报告,比如,如果客服团队想知道目前Linkedin的客户对于主页是否满意,其仅需要在Voices中输入“Homepage”,便可以瞬间得到结构化的可视的用户满意度数据。当然,瞬间获得结果的背后一定是严谨而先进的算法。

(从写模型到写机器人)

事实上,如上的例子还有很多很多,Linkedin商业数据分析部门自成立以来一共推出了几百款这样的产品,每天都在为每一个Linkedin员工提高工作效率和效果而努力。不仅如此,每款上述产品还可以自动地学习员工的使用习惯,以保证员工在下次再次使用相同的软件时响应速度会更快。“对Linkedin员工而言,我们的每一款产品都是为他们个性化打造的。”

规模自动化的结果当然是效率和效果的大幅提升,据悉,自2011年商业数据分析部成立以来,Linkedin的销售收入已经增长了20倍;其他所有环节的工作效率也大幅得以提升。

“我们不会满足于此,以前我们部门的主要任务是写模型,从2013年,我们部门开始设计写模型的机器人,这又进一步加快了公司在数据分析时的自动化和高效率。”Simon表示。

作者:钛媒体驻硅谷记者陈琛

摘自:钛媒体 tmtpost.com

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2014-12-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 PPV课数据科学社区 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
【推荐】LinkedIn怎么用大数据赚钱?
作者 杨琳桦 这可能是我听过对大数据最逻辑清晰和实用的一段案例阐述了,来自 Simon Zhang,LinkedIn Business Analytics 部门资深总监。 特别介绍一下:Simon 原是国内脑肿瘤医生,但“觉得一个人真正要想有追求,还是应该做自己喜欢的事”,于是 12 年前到美国,因个人爱好是计算机,就从医生转到了计算机行业。 四年半前,Simon 曾独自一人支持公司 200 多个销售;现在,他 80 人部门支持 LinkedIn 近 5000 多员工。该部门实际上负责所有和收入有关的
小莹莹
2018/04/20
1.4K0
张溪梦:庙算者多胜-大数据发展战略
时间:2014年6月6日上午 地点:北京国际会议中心 会议:中美创新链接·大数据专题研讨会 主办:中美创新协会,北京市科协 演讲人: 张溪梦,LinkedIn商务分析高级总监 演讲题目:庙算者多胜-大数据发展战略 以下为演讲全文: 感谢大家听我做汇报,我希望把我的演讲尽量变的更简短一些。我名字叫张溪梦,在美国大约做工作做了不到十年。主要目的就是做大数据分析,我以前是脑外科医生,做分析和做医生没有本质性区别,就是通过不同的症状来诊断事物本身的基本的比如说疾病。然后采用不同的方法治愈病人,让病人身体更健康。
大数据文摘
2018/05/21
6050
LinkedIn:我们下一步要做的是数据产品矩阵化
本文根据美国LinkedIn公司的数据分析部资深总监Simon Zhang在3月7日的阿里巴巴西湖品学大数据峰会的演讲整理而成,他着重分享了LinkedIn对体内数据的搭建、产品化和矩阵化的构想。文章未经演讲者审阅。 现在的大数据的后面是个大冰川,海平面上的普通人一般能看见,海平面以下是专业人士能看见的。Linkedin内部大约有起码20种不同的数据库,就是完全不同的技术的数据库,还不包括同样一种数据库有不同的应用。但实际上我们真正的内部企业用户,包括Linkedin本身,需要的不是一个大冰川,需要的最
大数据文摘
2018/05/22
4930
【推荐】用数据创造商业价值
GrowingIO联合创始人、CEO, 前LinkedIn美国商业分析部高级总监,张溪梦应邀参加7牛D-Furure 数据时代峰会,发表主题为《用数据分析创造商业价值》的主题演讲。 数据是一种连接。它连接4个最基本的象限,时间,地点,任务,事件。我们为什么要说数据会是下一次技术革命浪潮的最重要的指针?大家来看一下,根据美国几家顶级研究机构的报告,(Gartner,IDC等等),在未来的5年,我们会有40亿人通过互联网产生各种数据,将成就一个4万亿美元的市场,将有两千五百万种软件接入,2
小莹莹
2018/04/20
9240
【推荐】用数据创造商业价值
曝光:硅谷巨头们如何玩赚大数据
今天要跟大家分享的文章来自曾小苏 Clara的《硅谷观察之大数据篇》,该作者是36氪驻硅谷首席代表,水瓶座B型血爱吃肉,传说中是个美女。在硅谷的一个月,她在 startups demo days 和各种大公司一日游中度日,她以为会逃脱国内各种会上各种“大数据”和挖掘机的梗,但万万没想到那里更甚。所以,本文发自繁华程度仅次于五道口的宇宙中心硅谷(呵呵呵呵~),与国内小伙伴分享大数据在那片土地上的真实生长状况。在上篇她着重为大家介绍了硅谷“大数据公司”的类型,下篇讲了硅谷四大不同类型的公司如何玩转大数据。
IT阅读排行榜
2018/08/14
5250
硅谷观察之大数据篇(完整版)
作者: 曾小苏 Clara 摘自:36氪 【上篇:挖掘机和“改变世界的”大数据公司们】 硅谷的这一个月,我在 startups demo days 和各种大公司一日游中度日,以为会逃脱国内各种会上各种“大数据”和挖掘机的梗,但万万没想到这里更甚。Hi~ 本文发自仅次于五道口的宇宙中心硅谷,与你分享大数据在这片土地上的真实生长状况。 什么是“改变世界”的大数据公司 近两周硅谷两场规模比较大的 demo 大会上,就有十多家自称做大数据的 startups,有做消费者行为的,有做体育分析的,有做 NGO 融资的,
大数据文摘
2018/05/23
6290
大数据如何让社交网站收入增长85%?
每一天都有数百万用户登录 LinkedIn.com。 LinkedIn 的用户背景多元,需求多样,有企业、有学生,还有专业人员,他们有的积极求职谋业,有的只是为了扩张人脉。
IT阅读排行榜
2018/08/13
5510
大数据如何让社交网站收入增长85%?
【数据科学】张溪梦:四个案例讲透数据科学与商业结果结合的原力
论坛君 9月11日—9月12日,由经管之家(人大经济论坛)主办的“2015中国数据分析师行业峰会(CDA•Summit)”在北京举行。本文是Growing.io创始人张溪梦在峰会上的演讲全文,演讲的主
陆勤_数据人网
2018/02/26
1.1K0
【数据科学】张溪梦:四个案例讲透数据科学与商业结果结合的原力
独家专访 | 揭秘LinkedIn总部数据科学战队:技术强者常有,顶级团队胜在软实力
作者 | 魏子敏,Yawei Xia 薛娅菲和Aileen对本文亦有贡献 *本文为清华数据科学研究院联合大数据文摘发起的《数据团队建设全景报告》系列专访的第一篇内容。 从某种程度上讲,目前硅谷乃至全球最火爆的职业【Data Scientist】始于LinkedIn。 2008年,LinkedIn的数据科学团队负责人DJ Patil 和Facebook的Jeff Hammerbacher分别建立了全世界前两个真正意义上的数据科学团队,并且开始用“数据科学家(data scientist)这个词来描述他们的工作
大数据文摘
2018/05/23
9600
大数据公司挖掘数据价值的49个典型案例
本文力图从企业运营和管理的角度,梳理出发掘大数据价值的一般规律: 以数据驱动的决策,主要通过提高预测概率,来提高决策成功率; 以数据驱动的流程,主要是形成营销闭环战略,提高销售漏斗的转化率; 以数据驱动的产品,在产品设计阶段,强调个性化;在产品运营阶段,则强调迭代式创新。 从谷歌、亚马逊、Facebook、LinkedIn,到阿里、百度、腾讯,都因其拥有大量的用户注册和运营信息,成为天然的大数据公司。而像IBM、Oracle、EMC、惠普这类大型技术公司纷纷投身大数据,通过整合大数据的信息和应用,给其他公司
机器学习AI算法工程
2018/03/09
5K1
【热点】大数据应用于企业运营-傅志华
大数据在企业运营的不同层次有着不同的作用,也对应了不同的应用方法论。本文抽象出大数据应用于企业运营的不同层次以及相应的应用方法——大数据企业运营应用金字塔模型。大数据企业运营金字塔分为7个层面,包括数
小莹莹
2018/04/20
8210
【热点】大数据应用于企业运营-傅志华
大数据应用经典案例TOP50详细剖析
1. 梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
用户2040787
2018/05/04
3.9K5
大数据应用经典案例TOP50详细剖析
推荐收藏 | 数据产品经理的书单
4月23日对于世界文学而言是一个具有象征性意义的日子。1616年的这一天,塞万提斯、莎士比亚、印卡·加西拉索·德拉维加几位大师相继与世长辞。此外,这一天也是其他一些著名作家的出生和去世的日期,例如:莫里斯·德吕翁、哈尔多尔·K·拉克斯内斯、弗拉基米尔·纳博科夫、约瑟·普拉和曼努埃尔·梅希亚·巴列霍。
万能数据的小草
2020/04/27
2.1K1
从0到1,大数据智能供应链之路
大数据文摘作品,欢迎个人转发朋友圈,自媒体、媒体、机构转载务必申请授权,后台留言“机构名称+文章标题+转载”,申请过授权的不必再次申请,只要按约定转载即可,但文末需放置大数据文摘二维码。 素材来自:《大数据供应链》 中国人民大学出版社 【成功的诺基山】 2003年,钢铁制造建筑领军企业诺基山(Rocky Mountain) 钢铁公司迫于价格压力不得不关闭其钢管工厂。2005年,由于石油成本提高,潜在的客户、石油钻井公司纷纷涌现,公司需要重新制定策略。需不需要重开钢管工厂?如果要,什么时候重开?是马上开始生产
大数据文摘
2018/05/22
7430
解开“镣铐”看数据——GrowingIO发布首款实时商业数据分析产品(附张溪梦演讲实录)
需手动埋点、数据采集不全、核心业务数据无法保留、工程量繁重、可视化图表制作耗时漫长、业务人员无法自主按需分析、无法对用户行为进行实时深层分析,数据分析师产品常见的这七大痛点或许将成为历史。 12月8日,商业数据分析公司GrowingIO发布首款实时商业数据分析产品GrowingIO V1.0,该平台同时适用于Web页面、HTML5页面以及iOS/Android客户端的数据分析。 GrowingIO V1.0首次实现了无埋点数据采集、全面收集实时数据、一键出图、实时数据分析等功能,解开了数据的“镣铐”,大大提
CDA数据分析师
2018/02/11
1K0
解开“镣铐”看数据——GrowingIO发布首款实时商业数据分析产品(附张溪梦演讲实录)
【案例】详解BAT的互联网大数据应用有何不同?
互联网行业在大数据的积累和应用以百度、腾讯和阿里巴巴最为值得关注。百度、腾讯和阿里巴巴在大数据的应用上虽然有共同的地方,但由于各自的数据来源和商业模式的不同,其大数据应用也有不同的特色。本文将分析他们拥有的数据资产和应用,以方便大家了解大型互联网企业的大数据现状和未来策略。 百度、阿里巴巴和腾讯的数据资产 从数据类型看,腾讯数据最为全面,这与其互联网业务全面相关,其最为突出的是社交数据和游戏数据,其中:社交数据最为核心的是关系链数据、用户间的互动数据、用户产生的文字、图片和视频内容;游戏数据主要包括大型网游
小莹莹
2018/04/20
8860
【案例】详解BAT的互联网大数据应用有何不同?
大数据如何在企业中落地
经常听到很多大数据的概念和趋势,但是落地而务实的介绍相对较少。笔者根据在互联网和数据领域的实际从业经验,总结出数据价值金字塔在企业运营中的应用模型。该模型对应的是企业运营中的不同层面的数据需求,下文讲逐层介绍。 数据基础平台层,金字塔的最底层也是整个金字塔的基础层,如果基础层搭建不好,上面的应用层也很难在企业运营中发挥效果。没有数据或者没有高质量的数据,所有的分析都是误导,所有的数据挖掘都是错误的引导。 这一层的目标是把企业的所有用户(客户)数据用唯一的ID串起来,包括用户(客户)的画像(
CDA数据分析师
2018/02/08
1.1K0
大数据如何在企业中落地
快速掌握麦肯锡的分析思维
本文是《如何七周成为数据分析师》的第七篇教程,如果想要了解写作初衷,可以先行阅读七周指南。温馨提示:如果您已经熟悉分析思维,大可不必再看这篇文章,或只挑选部分。
hankleo
2020/09/16
6430
快速掌握麦肯锡的分析思维
【重量级干货】大数据攻略案例分析及结论
怎样才能用起来大数据?障碍如何解决?中国企业家研究院对10多家在大数据应用方面的领先企业进行了采访调研,更多家企业进行了书面资料调研,我们发现: ■ 当前中国企业的大数据应用可以归类为:大数据运
小莹莹
2018/04/18
6400
【重量级干货】大数据攻略案例分析及结论
话题:大数据变现的九种商业模式
在大数据成为趋势,成为国家战略的今天,如何最大限度发挥大数据的价值成为人们思考的问题。无论是对于互联网企业、电信运营商还是数量众多的初创企业而言,大数据的变现显得尤为重要。谁最先一步找到密码,谁就能够抢占市场,赢得发展。 大数据产业具有无污染、生态友好、低投入高附加值特点,对于我国转变过去资源因素型经济增长方式、推进“互联网+”行动计划、实现国家制造业30年发展目标有战略意义。前几年,国内大数据产业讨论较多、落地较少,商业模式处于初探期,行业处于两种极端:一种是过热的浮躁带来了一定的泡沫和产业风险;一
腾讯研究院
2018/01/31
2K0
推荐阅读
相关推荐
【推荐】LinkedIn怎么用大数据赚钱?
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档