前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基于达尔文进化论的遗传算法,还能帮你破解同事的密码?| 附代码

基于达尔文进化论的遗传算法,还能帮你破解同事的密码?| 附代码

作者头像
量子位
发布2018-03-27 15:43:15
7710
发布2018-03-27 15:43:15
举报
文章被收录于专栏:量子位
李林 编译自 SICARA blog 量子位 出品 | 公众号 QbitAI

量子位今天编译整理的这篇文章,全面地介绍了遗传算法(genetic algorithm),从它的起源和目标,到如何用python实现它。

本文作者是Louis Nicolle,发在法国大数据创业公司SICARA的博客上。

我们先来思考一个问题:

如何创造一个好的人工智能?

最朴素的方法,是创造一个“经验主义的算法”,由一堆规则构成,比如说“如果遇到西瓜,买一个”。有了足够多的规则,我们就能复制自然智能。

但是,这样做工作量巨大,而最终造出的智能也不可能超过它的创作者。花了好多时间,造的东西又不理想,是不是很伤心?

于是出现了一种新方法:我们不要写规则了,干脆重现一下进化过程,先造出一条史前鱼类,放在合适的环境中让它进化,等着它变成人,甚至更高级的生命。这种方法叫做“遗传算法”。

首先,让我们刷新自己的记忆,试着理解一下达尔文提出的自然选择。

这个理论很简单:物种想要生生不息,就得持续自我提升,适者才能生存。种群中最优秀的特质应该传递给后代,而其他个体也不能被遗忘,这样才能维持一定的多样性,自然环境发生变化时才更容易适应。

这是遗传算法的理论基础。

优化问题

遗传算法在优化问题上特别管用。

我们来举个例子:背包问题。

这个著名的数学问题是理查德·卡普在1972年提出的。问题是这样的:

你有两样东西,一个设定了承重能力的背包、一些重量和价值各不相同的盒子,目标是把盒子装到背包里,在不超过重量限制的情况下,装进尽可能高的价值。

它是一个优化问题,有很多可能方案,因此非常适合用遗传算法来解决。

动手教程:用遗传算法破解密码

为了体验这个算法,我们用它来解决一个简单的问题:破解同事的密码。

选择适应度函数

创建遗传算法的时候,第一件事是建立一个评价函数,用来衡量样本的成功与否。

它能帮我们分清丑小鸭和白天鹅,区分开之后,我们才能给成功的样本更多“机会”,让它参与生成下一代。

这一步看起来很简单,其实……嘿嘿嘿……

我们的目标是什么来着?破解密码。因此,函数的目标应该是将“成功/失败”的二元结果从0(一直失败)转换成100(完美)。

最简单的方法是:

代码语言:javascript
复制
fitness score = (number of char correct) / (total number of char)

这样,fitness得分更高的样本,就比其他个体更接近成功,我们这个fitness函数就能精确地为算法种群分类。

代码语言:javascript
复制
def fitness (password, test_word):

    if (len(test_word) != len(password)):
        print("taille incompatible")
        return
    else:
        score = 0
        i = 0
        while (i < len(password)):
            if (password[i] == test_word[i]):
                score+=1
            i+=1
        return score * 100 / len(password)

创建个体

我们知道了该怎样评价这些个体,但如何定义它们呢?这部分很难,目标是要知道哪些特征要保持不变,哪些是可变的。

为了理清思路,我们来和基因比较一下。DNA是由基因组成的,而每个基因都来自不同的等位基因,也就是说,DNA中的每一个基因,都是从一组等位基因中选出的。你需要为算法种群创建DNA。

在我们这个案例中,个体是词,每个词和密码的长度差不多;每个字母是一个基因,这个字母的赋值是它的等位基因。比如说banana这个词,b是第一个字母的等位基因。

这种创造有什么意义?现在我们知道每个个体都是长度合格的词,但是我们的种群覆盖了这个长度下所有可能的词。

创建第一个种群

上面我们知道了个体的特征,以及如何评估它们,接下来,该开始严格意义上的“进化”了。

在创建第一个种群时,要时刻记住这一点:我们不能将种群指向一个明显很好的方案。我们需要让种群尽可能广、覆盖尽可能多的可能性,完美的第一代种群应该覆盖现存所有等位基因。

所以,我们就要创建由随机字母构成的单词。

代码语言:javascript
复制
import random

def generateAWord (length):
    i = 0
    result = ""
    while i < length:
        letter = chr(97 + int(26 * random.random()))
        result += letter
        i +=1
    return result

def generateFirstPopulation(sizePopulation, password):
    population = []
    i = 0
    while i < sizePopulation:
        population.append(generateAWord(len(password)))
        i+=1
    return population

下一代

有了第一代,想创造下一代,我们需要做两件事:1)从现有的这一代中选择一部分;2)让它们结合在一起创造下一代。

首先,要从第一代中选择用来繁殖的“亲本”。

选择有很多方法,但是你必须牢记:我们的目标是从第一代中选择最好的方案,但不能将其他的都去掉。如果在算法开始创建时,就只选择了那些最好的方案,你会迅速收敛到局部最小值,没有机会找到最佳方案。

我的方法是一方面选择表现好的样本,就是下面代码中的best_sample;另一方面选择随机选择一组个体,也就是下面代码中的lucky_few。

代码语言:javascript
复制
import operator
import random

def computePerfPopulation(population, password):
    populationPerf = {}
    for individual in population:
        populationPerf[individual] = fitness(password, individual)
    return sorted(populationPerf.items(), key = operator.itemgetter(1), reverse=True)

def selectFromPopulation(populationSorted, best_sample, lucky_few):
    nextGeneration = []
    for i in range(best_sample):
        nextGeneration.append(populationSorted[i][0])
    for i in range(lucky_few):
        nextGeneration.append(random.choice(populationSorted)[0])
    random.shuffle(nextGeneration)
    return nextGeneration

下一步,育种。

我们依然和生物学来进行类比。有性生殖的目的是将两个个体的DNA结合起来,我们这里要做的事情也差不多。

我们有两个个体,Tom和Jerry,它们的DNA是由自己的等位基因(每个字母的赋值)决定的,为了将它们的DNA结合起来,我们需要将它们的字幕混合一下。在诸多方法中,我们选择最简单的一个:子代的每一个字母,都随机取自亲代的Tom或Jerry。

显然,Tom和Jerry这对亲本能生成不止一个后代,我们需要控制后代的数量,来保持种群规模的稳定。也就是说,第一代的个体数要和第二代的个体数相同。

代码语言:javascript
复制
import random

def createChild(individual1, individual2):
    child = ""
    for i in range(len(individual1)):
        if (int(100 * random.random()) < 50):
            child += individual1[i]
        else:
            child += individual2[i]
    return child

def createChildren(breeders, number_of_child):
    nextPopulation = []
    for i in range(len(breeders)/2):
        for j in range(number_of_child):
            nextPopulation.append(createChild(breeders[i], breeders[len(breeders) -1 -i]))
    return nextPopulation

接下来,我们要谈一谈遗传带来的变化。

上一步的育种过程会导致个体的自然变异。育种之后,每个个体都必须有一定可能性会看到自己的DNA发生变异。这样做的目标是防止算法收敛到局部最小化。

以下是控制变异的代码:

代码语言:javascript
复制
import random

def mutateWord(word):
    index_modification = int(random.random() * len(word))
    if (index_modification == 0):
        word = chr(97 + int(26 * random.random())) + word[1:]
    else:
        word = word[:index_modification] + chr(97 + int(26 * random.random())) + word[index_modification+1:]
    return word

def mutatePopulation(population, chance_of_mutation):
    for i in range(len(population)):
        if random.random() * 100 < chance_of_mutation:
            population[i] = mutateWord(population[i])
    return population

关于如何选择变异率,可以参考R.N.Greenwell、J.E.Angus、M.Finck 1995年的论文Optimal mutation probability for genetic algorithms

地址:http://www.sciencedirect.com/science/article/pii/089571779500035Z

小结

上面,我们讲了遗传算法的理论基础和适用问题,还讲了如何创建自己的遗传算法。

上文涉及的所有Python 3代码都在GitHub上,地址:https://gist.github.com/NicolleLouis/d4f88d5bd566298d4279bcb69934f51d

教程原文地址:https://blog.sicara.com/was-darwin-a-great-computer-scientist-81ffa1dd72f9

如果你想进一步探索AI和遗传算法,可以看看以下资源:

1. 网页应用

BoxCar是这类算法的一个网页应用,这个算法的目标是创造最有效的两轮车辆。

地址:http://rednuht.org/genetic_cars_2/

2. 移动应用

在Evolution这个App里,你需要创建一个有关节、骨骼和肌肉的“生物”,然后算法会优化它的运动方式来完成特定任务,比如跳、跑、爬台阶等等。

地址:https://play.google.com/store/apps/details?id=com.keiwando.Evolution

3. DIY

最后再推荐一个编程游戏网站。每个月,这个网站都会举办为期一周的比赛,让参赛者创造最好的人工智能,获胜者用的几乎一直是遗传算法。

地址:https://www.codingame.com/home

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-08-30,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 量子位 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 如何创造一个好的人工智能?
  • 优化问题
  • 动手教程:用遗传算法破解密码
    • 选择适应度函数
      • 创建个体
        • 创建第一个种群
          • 下一代
          • 小结
          相关产品与服务
          人工智能与机器学习
          提供全球领先的人脸识别、文字识别、图像识别、语音技术、NLP、人工智能服务平台等多项人工智能技术,共享 AI 领域应用场景和解决方案。
          领券
          问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档