前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【吴恩达专访】我所理解的人工智能,创新和失败

【吴恩达专访】我所理解的人工智能,创新和失败

作者头像
新智元
发布2018-03-27 11:11:06
7970
发布2018-03-27 11:11:06
举报
文章被收录于专栏:新智元

【新智元导读】作为人工智能界的标志性人物,吴恩达在2014年加入百度后受到了国内相关领域的强烈关注。这篇霍芬顿邮报(Huffington Post)对吴恩达的长文采访,详细地回溯了吴恩达的成长经历,讲述科学家背后的成长,经历的失败和保持的信念。吴恩达认为,创造力是可以被教授的,最有效获取有效信息的方式是阅读和与专家交谈。

可以说最好的计算机科学的项目分布在卡内基美隆、麻省理工、加州大学伯克利分校和斯坦福大学等高校中,而吴恩达教授 (Andrew Ng)正是从这些地方分别取得了本科,硕士,博士学位,以及12年的任教经历。

吴恩达虽然不到40岁,但是已经是人工智能界的标志性人物。早在2011年,他建立了谷歌大脑(Google Brian),这是依托于谷歌强大的计算能力和丰富的数据建立起来的一个深度学习的研究项目。可喜的是,这个项目的重要成就之一是通过让计算机分析几十个YouTube的视频截图来识别猫(《纽约时报》标题:需要多少计算机才能正确的识别猫?16,000台)。正如吴恩达解释的那样,“最值得注意的是,我们的系统自己发现了‘猫’的概念,尽管没有人告诉过它‘猫’是什么。这可以说是机器学习的一个里程碑”。

吴恩达流露出喜悦但却非常冷静,他欣然地讨论着他职业生涯中犯过的错误和遇到的失败,以及他读不懂的论文。他每天穿着一样的牛津蓝的衬衫。他的妻子Carol Reiley从事外科手术机器人的研究,当同事们谈及他和妻子之前那张机器人主题的订婚照片时,他也会脸红,但又非常自豪。

尽管他作为讲师备受欢迎,但当和他一对一交谈时,他的声音显得非常柔和。2011年,他把自己在斯坦佛教授的机器学习课程录像上传到网上,随后超过100,000人在网上注册学习了这门课。在接下来的一年里,他和别人共同创立了迄今世界上最大的在线公开课程平台—Coursera。Coursera 的合作伙伴包括包括普林斯顿、耶鲁以及中国和欧洲的顶尖高校。尽管Coursera是一个盈利性的公司,但所有的课程都是免费开放,因为“对课程本身的内容收取费用将是一个悲剧”,吴恩达说到。

去年春天,吴恩达宣布了一条令人震惊的事情,他将离开谷歌、离开曾全身心投入的Coursera而加盟百度。当时,中国的科技巨头百度斥资3亿美金,在位于谷歌硅谷总部不远的地方,正建立一个专注于研究人工智能的实验室。吴恩达将会领导和管理这个实验室。

像之前一样,吴恩达在百度继续尝试让计算机以很高的准确率来实时识别音频和图像文件。吴恩达相信,高达99%准确率的语音识别技术会为人和计算机的交互方式、以及未来操作系统的设计带来革命性的改变。同时,面对百度的数以百万刚开始体验数字生活的用户,他要帮助百度为这些用户提供更好的服务。“在中国,你可能得到和美国的完全不一样的查询请求”,吴恩达解释道,“例如,我们得到的查询可能是‘百度你好,上周我在街角的那家店吃了碗面,味道很棒,你觉得这周末那家店会有促销活动吗?’”。“像这样的查询请求”,吴恩达补充道,“我想我们已经可以很好的回答它”。

尽管Elon Musk (SpaceX和特斯拉的CEO)和史蒂文霍金已经发出警告:高级人工智能技术可能会威胁到人类自身,吴恩达却不以为然,“我不会防止人工智能向邪恶的方向发展,就像我现在不会去解决火星上人口过剩问题一样。”根据吴恩达所说,距离人工智能达到可以自我感知的水平,还有相当长的一段时间。但与此同时,人工智能导致了更加棘手的问题的出现:这些基于机器学习的计算机,正在取代很多人工工作,而且这种趋势正在加速。吴恩达经常呼吁政策的制定者为因此产生的社会经济后果做好准备。

在位于加州Sunnyvale 的百度实验室,我们采访了吴恩达先生。我们谈到了一个名为‘索菲亚’(Sophia)的项目,这个项目诣在收集非常有趣的人的经历。他解释了为什么他认为“跟随着你的热情”是非常糟糕的职业发展建议,分享了他教授创造力的方法;他也讨论了他的失败经历以及他的一些不错的习惯,对他影响最大的书籍以及他关于人工智能前沿领域的一些看法。

问:您最近曾说过,“我发现人们正在学着更具有创造力了”,请您解释一下?

答:问题是,一个人如何才能创造新的想法?新的想法是某一个方面的天才(比如乔布斯)的不可预知的行为?还是可以通过系统的传授产生创新的想法?

我相信创新的能力是可以被教授的。人们可以通过很多方式来系统的发明创新。我在百度做的事情之一是组织一个关于培养创新思维的讨论班。我的想法是,创新不是那些天才所做的随机的、不可预知的事情,恰恰相反,人们可以非常系统的创造从未被创造的新事物。

对我而言,无论何时,当我觉得我不知道下一步应该如何做的时候,我将会尝试大量的学习和阅读,和某些领域的专家谈话。我不知道我们的大脑是如何工作的,但它非常的神奇:当你读了足够多的书,或者和足够多的专家谈话之后,换句话说,当你的大脑有了足够多的输入信息,新的想法就会随之产生。我知道的很多人都有这样的经历。

当你对某一个某技术领域足够的了解,你便停止随机地寻找新的想法。你会通过深思熟虑来选择想法,把这种想法组合到一起。你也会知道什么时候尝试创造尽量多的想法,什么时候裁剪、整合已有的想法。

好了,现在还有一个挑战,就是面对非常多的新想法,你如何去做?如何进一步用这些想法做一些非常有用的东西?当然,这是另外一回事了。

(Photo: Jemal Countess/Getty)

问:你可以谈一下你平时会学习什么,学习的方法是怎样的?

答:我阅读很多材料,也花很多时间和很多人交谈。我觉得两个最有效的学习、获取信息的方法是阅读和同专家交谈。所以我会花很多时间做这两件事情。在我的kindle上有不到一千本书,我大概已经阅读了其中的2/3。

在百度,我们有阅读小组,在那里,我们可以每星期读半本书。我试试上参加了两个这样的阅读小组,在每个小组里都会每星期读半本书。我想我是唯一一个参加了两个阅读小组的人。我每周六下午最喜欢的活动就是独自在家阅读。

问:我想了解一下早期教育对你的影响,你觉得父母做了什么独特的事情对你后来产生了持续的影响?

答:我记得在我六岁时,我父亲为我买了一台电脑,并帮助我学习编程。这本身并不是很特别,因为很多计算机科学家从很小的时候就开始学习编程了。但我仍然觉得从小就拥有计算机学习编程是件很幸运的事。

不像传统的亚洲家长,我的父母对我的要求非常宽松。当我在学校取得好的成绩时,他们就会夸张地表扬我,甚至让我觉得有些尴尬。所以我有时故意把取得的好成绩藏起来[笑]。我不喜欢把我的成绩单拿给父母看,不是因为我的成绩不好,而是因为他们的反应。

我有幸能在很多地方生活和工作过:我出生在英国,在中国香港和新加坡长大,来到美国读书。我在卡内基美隆,麻省理工,伯克利都拿到了学位,最后去了斯坦福任教。

我也有幸因为去了这些地方,从而见到了很多非常优秀的人。我在著名的前AT&T贝尔实验室做过实习,然后去了微软研究院。这些经历使我有机会从各个角度看待问题和接受观点。

问: 如果可以重新规划你的教育和早期的职业,你会做哪些不同的事情?你有哪些会让别人受益的教训,可不可以分享一下?

答: 我希望这个社会能给年轻人更好的职业发展建议。“跟着你的热情做事”不是什么好的建议,相反,是给年轻人非常糟糕的建议。

如果你酷爱驾车,并不一定要成为赛车车手。事实上,我们应该把“跟着你的热情做事”改成“跟着你的热情做事,但这些热情是对你在大学所学专业相关事物的热情”。

但通常,你先是掌握了一件事情,然后才会对它有热情。我相信大多数人都会很好的掌握大多数事情。所以关于选择我想要做的事情,有两个标准。第一,是否有学习的机会。就是说,做这件事情是否会让我学到新的、有趣的、实用的东西?第二,就是潜在的影响。这个世界有很多有趣的问题需要解决,但也有很多重要的问题。我希望大家把精力放在解决重要的问题上。

幸运的是,我不断地找到能够产生深远影响的事情去做,同时也有很多学习的机会。我想,年轻人如果能注重优化这两个标准,就会获得非常好的职业发展。

我的团队的使命就是要做更难、更高级的人工智能技术,这些技术会影响数亿人们。这就是令我兴奋的使命。

问: 在你看来,重要性就是说可以影响很多人吗?

答:不是。受到影响的人的数量并不是衡量重要性的唯一标准。用显著的方式改变数亿人的生活,我想这是我们可以合理追求的境界。通过这种方式,可以确信,我们不仅仅是做有趣的事情,而且是做有影响的事情。

问:你之前谈到过你做过一些失败的项目,那你又是如何面对这些失败呢?

答:失败在所难免,说来话长了[笑]。几年前,我在 Evernote里面列了一起清单,试图记住我所有开始做,却由于各种原因最后不了了之,或者没有成功,亦或投入和产出完全不成比例的项目。有时,我通过运气而非技能,以出乎我意料的方式,把一些项目做出来了。但我还是列了上面提到的那个清单。然后把它们按照哪里出了问题分类,对他们进行彻底的分析,找出没有成功的原因。

其中的一个失败的案例发生在斯坦福。当时受到鹅群成V型飞行,我们曾尝试让飞机也以V字型飞行,从而节省燃料。关于这方面的空气动力学理论非常成熟,我们就花了一年时间让飞机可以被自动控制,然后以V字型飞行。

但一年之后,我们发现我们没有办法让飞机以足够的精度控制飞机从而实现节省燃料。如果重新开始这个项目,我们会意识到我们用小型飞机根本不可能实现那个目标。因为阵风很容易无法让飞机准确地以V字型飞行。

我以前很容易犯的一种错误,就是当我做一个项目时,一步,两步,三步之后,发现第四步根本不可能完成。希望这种错误现在会少很多。上面的那个飞机V字型飞行的例子,我在战略创新组会上也讲过,教训就是尽早的发现项目的风险。

现在,我学会尽量早的发现评估项目的风险。如果我现在说“我们应该尽早找到项目的风险”时,每个人都会赞同,因为这显然是正确的。但问题是,如果你自己面对一个新的项目时,很难把我说的应用到你的项目中去。

究其原因,这些科研项目是一种策略技能。在现行的教育系统中,我们非常善于教授已有的事实,比如食谱。如果你要做意大利番茄牛肉面,你只需要照着食谱做就好了。

但创新或者创造力是一种策略技能,每天你醒来,便会处在从没有经历过的环境中,你需要在你自己所处的独特环境中做决策。据我所知,教授策略技能的唯一途径是通过经历无数的案例。当你已经见过足够的案例后,大脑会内化这些定律和准则,从而更好的做出决策。

通常,我发现做科研的人们要花好多年才能见到足够多的案例,内化这些准则。所以在这里,为创新策略,我一直试验做飞行模拟器。在非常有限的时间内,飞行模拟器可以产生非常多的案例,人们不再需要花五年时间来看足够多的案例。

如果你学驾驶飞机,你需要费很多年,或者几十年才能遇到紧急情况。但在飞行模拟器中,我们可以在很短的时间里展示非常多的紧急情况。这会让你学习的更快。这些就是我们一直试验的东西。

问: 当试验室刚刚建立,你说你之前还没看到团队文化的重要性,但你已经看到它的价值。几个月过去了,你学会到如何建立正确的团队文化了吗?

答:很多机构有关于文化的文件,比如“我们要互助”等等。当你说这句话的时候,每个人都会点头,因为没有人不想帮助团队的其他成员。但当他们回去以后,过了五分钟,他们还会这么做吗?事实上人们很难把抽象和实际联系起来。

在百度,我们做了一件关于文化的事情,我认为这是很不寻常,因为我不知道有别的企业这么做过。我们做了一个小测验,向每个员工描述一个具体的情景,然后问他们,“如果你在这种情况下,你应该怎么做?选A, B, C还是D?”

没有人在第一次就能拿到测验的满分。我觉得通过在测验中让员工把具体的行动用到假设情景中,就是我们尝试帮助员工把抽象的文化和实际联系起来。当你的员工找到你,做了这些事情,你会怎么做呢?

问:你是否可以分享一些对你知识构建很有影响的书呢?

答:对于那些想要创新的人,我有一些书推荐。第一本是《从零到一》(Zero to One),这是一本非常好的书,给出了对创业和创新的概览。我们经常把创业分为B2B, B2C. 对B2B,我推荐《跨越鸿沟》(Crossing the Chasm)。对B2C,《精益创业》(The Lean Startup)是我非常喜欢的一本书。这本书从更窄的范围入手,但给出了具体的快速创新策略。这本书的范围有点窄,但在提及的那些领域,它讲的非常棒。

然后我们进一步把B2C细分,两本我非常喜欢的书是,首先是《与人沟通》(Talking to Humans),这是一本非常简短的书,教会你如何通过和你服务的用户交谈,来为他们设身处地的着想。另外一本是《妙手回春》(Rocket Surgery Made Easy),如果你想做一些重要的,人们关心的产品,这本书会告诉你一些不同的策略(通过用户学习或者是面谈)了解你的用户。

最后,我推荐《创业艰难》(The Hard Thing about Hard Things)。这本书有些深,但它涵盖了关于如何建立企业的方方面面。

对那些想做出职业发展决策的人,So Good They Can't Ignore You是一本非常有趣的书,它给出了关于如何选择职业发展道路的非常有价值观点。

问:你有那些好的习惯呢?

答:我每天都穿蓝色牛津衬衫,我不知道你是否已经意识到了。[笑]是的,培养好的习惯的能力是你撬动你生命的最大杠之一。

当我和研究人员,或是想创业的人交谈时,我告诉他们如果你不断地阅读论文,每周认真研究六篇论文,坚持两年。然后,你会学到很多东西。这是对你长期发展一个极好的投资。

但这种投资,比如你花整个周六去学习而不是看电视,没有人会赞扬你。而且很可能你在周六所学的东西对你在接下来周一的工作没有什么帮助。我们很少会从这些投资中得到短期回报。但这却是很好的长期投资。确实,要想成为一个伟大的研究者,就要大量阅读。

人们通常用意志力做这些事情,但不起作用,因为意志力会耗尽。我觉得,人们喜欢创造习惯,比如每周都努力的学习工作,这是最重要的。这些人才是最可能成功的。

我有一个习惯,每天早晨花七分钟用手机应用锻炼。我发现更容易每天做同样的事情,因为我只有一个选择。同样的原因,我的衣柜里塞满了蓝色的衬衫。我以前有两种颜色的衬衫,蓝色和紫红色。我觉得我需要做的决定太多了[笑]。所以我现在只穿蓝色衬衫了。

问: 你主张政策制定者要花时间想一下未来,当计算机和机器人削减了大量个人工工作。对这个问题,你有什么解决方案呢?

答:这是个很难回答的问题。计算机擅长做重复性的工作。迄今为止,计算机主要擅长的事情就是把人们每天重复的劳动自动化。

让我们从工作的难易程度来具体的分析。工人们在流水线上工作,每个月都重复同样的动作。现在部分这样的工作已经可以有机器人来实现。中等难度的工作,拿驾驶开车举例子。卡车司机每天都是做同样的事情,所以计算机也试图做这件事。虽然这比大多数人想象的要难很多,但自动驾驶很可能在未来的十几年里成为现实。最后讲的是最有难度的工作,比如放射线学家每天都要分析同样类型的X光射线,同样,计算机可能涉足这些领域。

但是对于那些非重复性的社会工作,我想,在今后很长一段时间内,人类要比计算机更擅长这类工作。很多工作,我们需要每天做不同的事情,见不同的人,计划不同的事情,解决不同的问题。现在,这些事情对于计算机来说还是很难完成。

当美国从农业经济向制造和服务型经济转型,有很多的人转变了所从事的工作,比如,从在农场工作变为制造或在电话客服中心工作。很多的人经历了那种转变,所以他们找到了新的工作,他们的生活还不错,但他们从事的工作大多还是重复性。

我们现在面临的挑战是,如何大规模地教人们从事非重复性的工作。从历史来看,我们的教育系统并不擅长做这种大规模的培训。顶尖高校擅长为相对少的一部分人提供这种培训。但大部分的人最后做的确实重要但重复性很强的工作。这是我们教育系统面临的挑战。

我觉得这个问题可以被解决。这就是我为什么一直想教授创新策略。我们要让很多人能做不重复的工作。这些创新策略,这些创新的飞行模拟器可以实现这个目标。我不是说我们已经知道如何解决这些问题,但我很乐观的相信我们能够解决它。

问: 你曾说过,“总体上来看,在中国的工程师要比在硅谷的工程师工作努力。在硅谷的初创公司的工程师工作非常努力,在成熟的公司,我没有见过像你这种工作强度,无论在初创公司还是在百度。”你为什么这么说呢?

答:其实我也不是很清楚。我觉得在中国的工程师非常出色。在硅谷的工程师也很出色。我认为不同之处在于公司。百度的工程师团队动作非常快。

对中国互联网经济的现状评价很少,我更感觉,所有的假设可以受到挑战,任何事情都可以被随时利用。中国互联网生态非常有活力。每个人都能看到大的机遇,每个人也都能看到大量的竞争。变化无所不在。新的事物出现,很多公司就会在一天之内进入一个全新的商业领域。

举个例子,在美国,如果Facebook说要做一个新的搜索引擎,我们可能会觉得这么做有点怪。为什么Facebook要做搜索引擎呢?这非常困难。但在中国,这种事情却更可信些,因为这么做不仅仅是个假设,还可能会创造一种新的商业模式。

问:这看起来是一种不同的管理文化,因此你可以很快的做重要的决定,从而让这些决定更明智有效,而不是更混乱。百度是以一种独特的方式来运营吗?你觉得这种运营方式对百度的成长有帮助吗?

答:这是一个非常好的问题。我想一下这个问题如何入手。在百度,决策制定可以推行到公司的最底层。百度的员工有很大的自治权,他们显得非常重要。有一件事我很欣赏公司,特别是公司执行高层,就是对世界,对竞争,有着清晰的眼界。

在管理层会议上,我们对公司的说话方式,没有任何的虚张声势。在公司的内部陈述中,他们会说“我们在这件事上做的很好。我们对这些是不是很满意。这些做的不错。这些做的不是很好。这些事情我们应该强调一下。我们仔细分析一下我们犯的错误。”在这里,确实没有什么虚张声势,我想,这让公司有一个不错的环境从事创新以及专注。

问:比起其他的问题,你非常专注语音识别。你现在遇到那些困难,当你解决了这些困难后,会让语音识别的准确率有显著的提高?

答:我们现在在做基于机器学习的语音识别系统。我们正在使用的一些机器学习的技术已经存在几十年了。但正是过去的几年,这些技术才真正开始被使用。

为什么会这样呢?我经常拿建造火箭飞船作比喻。火箭飞船需要很大的发动机和非常多的燃料。发动机必须足够大,燃料必须足够多。如果燃料很多发动机很小,那无法飞离地面。如果发动机很大但燃料很少,飞船可以飞起来,但无法进入轨道。

现在机器学习才真的算得上起步,原因是我们有了建造巨大引擎的工具—大型计算机。燃料就是数据。现在我们终于拥有了所需要的数据。

社会的数字化创造了很多的数据,长期以来,我们已经产生了很多的数据。但就是最近几年我们才有能力建造大引擎来吸收燃料。所以处理语音识别的方法就是想办法建造大引擎,并得到更多的燃料。

举个我们做的一个例子,这个例子有点偏技术。从哪里获取语音识别的数据呢?我们做的其中一件事就是获取音频数据。其他的研究组可能只用几千小时的音频数据,但我们用的是十几万小时的数据。这比你在学术文献里使用的燃料要多很多。

然后我们把人们说话的音频剪切下来,加上背景噪音,听起来像人们在咖啡厅里面的录音。这就是人工合成像在咖啡厅录制的音频。通过把人们的声音和背景音合成,我们得到了更多的数据。我们正是通过类似的方法,把更多的数据放到机器里,填充火箭的发动机。

说到语音识别,有一件事要提一下:大多数人不理解95%和99%的准确度的区别。95%的准确度意味着20个词中有一个是错的。这非常烦人,因为在电话上退回去再去纠正它非常痛苦。

99%意味着一切都变了。99% 说明语音识别系统更可靠。你在任何时候使用它,它都会照常运转。所以这不是四个百分点的改进,这将会是人们几乎不使用跟一直使用的差别。

问: 你觉得现在达到99%准确率的困难是什么呢?

答:我们需要更大的火箭引擎和更多的燃料。现在这两方面都很有限,而且这两方面要同时增长。我们正在为推动这些方面的发展而努力。

霍芬顿邮报原文地址:http://www.huffingtonpost.com/2015/05/13/andrew-ng_n_7267682.html

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2016-04-24,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 新智元 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
人工智能与机器学习
提供全球领先的人脸识别、文字识别、图像识别、语音技术、NLP、人工智能服务平台等多项人工智能技术,共享 AI 领域应用场景和解决方案。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档