
对于推荐系统(Recommend System, RS),从广义上的理解为:为用户(User)推荐相关的商品(Items)。常用的推荐算法主要有:
在推荐系统中,最重要的数据是用户对商品的打分数据,数据形式如下所示:








对于上述的评分矩阵,通过矩阵分解的方法对其未打分项进行预测,最终的结果为:

程序代码如下:
#!/bin/python
'''
Date:20160411
@author: zhaozhiyong
'''
from numpy import *
def load_data(path):
    f = open(path)
    data = []
    for line in f.readlines():
        arr = []
        lines = line.strip().split("\t")
        for x in lines:
            if x != "-":
                arr.append(float(x))
            else:
                arr.append(float(0))
        #print arr
        data.append(arr)
    #print data
    return data
def gradAscent(data, K):
    dataMat = mat(data)
    print dataMat
    m, n = shape(dataMat)
    p = mat(random.random((m, K)))
    q = mat(random.random((K, n)))
    alpha = 0.0002
    beta = 0.02
    maxCycles = 10000
    for step in xrange(maxCycles):
        for i in xrange(m):
            for j in xrange(n):
                if dataMat[i,j] > 0:
                    #print dataMat[i,j]
                    error = dataMat[i,j]
                    for k in xrange(K):
                        error = error - p[i,k]*q[k,j]
                    for k in xrange(K):
                        p[i,k] = p[i,k] + alpha * (2 * error * q[k,j] - beta * p[i,k])
                        q[k,j] = q[k,j] + alpha * (2 * error * p[i,k] - beta * q[k,j])
        loss = 0.0
        for i in xrange(m):
            for j in xrange(n):
                if dataMat[i,j] > 0:
                    error = 0.0
                    for k in xrange(K):
                        error = error + p[i,k]*q[k,j]
                    loss = (dataMat[i,j] - error) * (dataMat[i,j] - error)
                    for k in xrange(K):
                        loss = loss + beta * (p[i,k] * p[i,k] + q[k,j] * q[k,j]) / 2
        if loss < 0.001:
            break
        #print step
        if step % 1000 == 0:
            print loss
    return p, q
if __name__ == "__main__":
    dataMatrix = load_data("./data")
    p, q = gradAscent(dataMatrix, 5)
    '''
    p = mat(ones((4,10)))
    print p
    q = mat(ones((10,5)))
    '''
    result = p * q
    #print p
    #print q
    print result其中,利用梯度下降法进行矩阵分解的过程中的收敛曲线如下所示:

'''
Date:20160411
@author: zhaozhiyong
'''
from pylab import *
from numpy import *
data = []
f = open("result")
for line in f.readlines():
    lines = line.strip()
    data.append(lines)
n = len(data)
x = range(n)
plot(x, data, color='r',linewidth=3)
plt.title('Convergence curve')
plt.xlabel('generation')
plt.ylabel('loss')
show()