前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >TensorFlow从1到2 | 第四章: 拆解CNN架构

TensorFlow从1到2 | 第四章: 拆解CNN架构

作者头像
用户1332428
发布2018-03-09 10:24:30
7760
发布2018-03-09 10:24:30
举报
文章被收录于专栏:人工智能LeadAI

上一篇 《TensorFlow从1到2 | 第三章: 深度学习革命的开端:卷积神经网络》 快速回顾了CNN的前世今生。

本篇将拆开CNN架构,一探究竟。

卷积滤波器
卷积滤波器

基于空间映射的架构

全连接网络架构存在一个“硬”伤:网络中各层神经元的一维排布方式,丢弃了图像的空间结构信息。

以MNIST识别为例,当输入一副28x28的二维图像,我们首先会把它拉平为一个长度为784的一维的向量,而后才将其连入隐藏层的每个神经元。输入图像中两个相距较近的像素位置,与两个相距较远的像素位置,对于神经元来说并没有差别。全连接网络只能靠大量训练,通过更新神经元对每个像素位置权重这种“软”方法,推断出图像的空间结构。

与全连接网络不同,CNN中的各层神经元排列都保持了二维的图像空间结构(末端的全连接层除外),如下图所示。

CNN架构
CNN架构
LeNet-5
LeNet-5

这就是LeCun在1998年发表《Gradient-based learning applied to document recognition》(http://www.dengfanxin.cn/wpcontent/uploads/2016/03/1998Lecun.pdf)提出的第一个正式的卷积神经网络架构——LeNet-5,Google学术搜索显示被引用9562次,经典程度可见一斑。

以“层”作为拆解粒度的话,刨去输入层和输出层,LeNet-5共有6个隐藏层:从左到右依次是:

  • C1卷积层(Convolutional Layer);
  • S2降采样层(Sub-Sampling Layer),即池化层(Pooling Layer);
  • C3卷积层;
  • S4降采样层;
  • C5卷积层;
  • F6全连接层(Full Connected Layer);

其中,关于全连接层我们已经非常熟悉了(回顾直达TensorFlow从0到1),而其余的5层中,只有卷积层和降采样层两种类型,交替重复出现。

需要注意的是,LeNet-5是CNN的一种特化架构,在构建自己的CNN的时候完全可以自定义架构的大小和深度(卷积层和降采样层的数量)。

接下来分别去看卷积层和池化层。

卷积层

卷积层分为4个小主题来说:

  • 局部感受野;
  • 共享权重和偏置;
  • 多通道算法;
  • 滤波器的层次;

局部感受野

与全连接网络的另一个迥异是,卷积层神经元具有局部感受野,它只能“看到”一小块局部图像,如下图所示。

局部感受野-1
局部感受野-1

图中左侧是28x28的输入层,右侧是第一个隐藏层——卷积层,其中第一行第一列的神经元能够“看到”一块5x5的局部图像。

接下来看卷积层的第一行第二个神经元,5x5的“小视窗”从之前的位置,整体向右滑动了1个像素(跨距),形成了它的感受野,见下图。

局部感受野-2
局部感受野-2

依照上述这种局部映射逻辑,依次从左到右,从上到下,便构建好了卷积层与上一层输出的位置映射关系。需要注意的是,卷积网络中各层的二维结构,以及“小视窗”都是正方形的,如果输入原始数据是长方形图片,则需要进行预处理。

用N代表输入层的尺寸,F代表小视窗尺寸,stride代表跨距,那么卷积层的二维尺寸可以通过公式计算出来:

K = (N - F) / stride + 1

已上图为例,输入层的尺寸是28x28,小视窗尺寸为5x5,每次整体挪动1个像素,那么计算得出卷积层的二维尺寸是:

(28 - 5) / 1 + 1 = 24

经过卷积映射,卷积层的尺寸比输入层尺寸减小了。如果想保持卷积层尺寸不变,一个常规做法是对输入图像沿边界整圈补0。记补0的圈数为P,那么卷积层尺寸的计算公式更新为:

K = (N + 2P - F) / stride + 1

已上图为例,在做卷积映射前,对输入图像补0两圈,可以使卷积层尺寸保持与原图像不变:

(28 + 2x2 - 5) / 1 + 1 = 32

补0操作如下所示:

Pad the Boarder
Pad the Boarder

归纳当前构建网络用到的超参数:

  • 输入层的尺寸,记为N;
  • 小视窗尺寸,记为F;
  • 跨距,stride;
  • 补0圈数,记为P;

共享权重和偏置

仍以前面的图[局部感受野-1]为例。

如果“小视窗”的尺寸是5x5,那么卷积层中一个神经元的连接数(即权重数)只需要25个,明显比全连接神经元少很多。不仅如此,更感意外的是,该神经元所在整个隐藏层的权重数量也只需要25个!

这是本篇提到的第3个与全连接网络的迥异之处:卷积层中的这些神经元的权重和偏置是共享的。也就是说,这些神经元其实长得一模一样的。

对此一个形象的解释是:卷积层中的这些神经元其实是在图像不同的局部区域中去“挑选”一组“必须”相同的特征。基于此理解,代表共享权重和偏置的“小视窗”,被称为Filter(滤波器)也就非常自然了。

对于卷积层位置在(j,k)的神经元,其输出表达式可以记为:

神经元输出表达式

其中:

  • σ是神经元的激活函数;
  • b是共享偏置;
  • wl,m1个5x5的共享权重;
  • ax,y是上一层位置为(x,y)的输出值;

基于位置映射规则,以及神经元共享权重和偏置,整个隐藏层的输出,可以用数学上称为卷积(Convolutional)的操作来非常简明的表示出来:

al+1 = σ(w * al + b)

其中,符号“*”就表示卷积操作,在这个解释下“小视窗”又有了一个新名字——卷积核。这就是卷积神经网络这个名字的来历。关于更多卷积的解释,可以看看知乎上的精彩讨论:卷积的物理意义是什么?(https://www.zhihu.com/question/21686447?nr=1)。

多通道卷积算法

为了解释清楚局部感受野、参数共享以及神经元输出的计算方法,在前面采用了一个极简的模型:

  • 输入图像是单通道的灰度图;
  • 卷积层的滤波器(卷积核)也只有1个;
  • 卷积层输出仍然是单通道的;

但是在实际情况中,事情要复杂的多。首先输入图像多数是多通道的(比如RGB三通道),再者卷积层做特征检测的滤波器只有1个肯定是远远不够的,我们需要大量不同的滤波器来提取各种特征,进而产生多通道的输出。概括起来,有以下三方面的扩展:

  • 多通道输入;
  • 多个多通道滤波器;
  • 多通道输出;

KEEP CALM!一张动图可以体现出以上的所有扩展:

多通道卷积
多通道卷积

观察上图,有:

  • 输入尺寸:7x7x3;
  • 滤波器尺寸:3x3x3;
  • 滤波器数量:2;
  • 滤波器跨距:2;
  • 补0圈数:1;
  • 输出尺寸:3x3x2;

其中输入,滤波器,输出都变成了三维结构,多出的一维就是通道,Channel。3者的关归纳如下,务必牢记:

  • 输入的通道数 == 滤波器的通道数;
  • 滤波器的个数 == 输出的通道数;

这个关系可以用另一种视图辅助记忆,见下:

滤波器的层次
滤波器的层次

滤波器的层次

上一篇《TensorFlow从1到2 | 第三章: 深度学习革命的开端:卷积神经网络》,介绍了哺乳动物的视觉系统,它是分层递进的,每一级都比前一级处理更高层次的视觉概念。而据此启发设计的卷积神经网络,是如何体现分层递进的呢?

2013年Zeiler与Fergus的《Visualizing and Understanding Convolutional Networks》(https://arxiv.org/abs/1311.2901)给出了回答,他们将训练好的卷积网络的各卷积层卷积核,通过可视化手段呈现了出来。卷积神经网络果真如同生物视觉皮层那样,先从边缘检测开始,然后逐层提升检测特征的抽象层次,如下图所示:

特征检测的层次
特征检测的层次

池化层

在卷积网络架构中,一个卷积层后面,会紧跟一个池化层(Pooling Layer),它的主要作用就是降采样(Sub-Sampling),简化卷积层输出的信息。

池化层的行为比较简单,输入和输出的通道数并不发生改变,仅仅是二维尺寸的缩小,如下图:

池化
池化

最常用的池化滤波器之一是最大值池化(Max Pooling),同卷积滤波器一样它也有自己的超参数:尺寸和跨距(stride)。以一个尺寸为2x2,跨距为2的Max Pooling为例,池化操作对输入逐通道进行操作,只保留局部感受野中的最大值形成新的输出通道,如下图所示:

最大值池化
最大值池化

全连接层

经历了多次的卷积和池化,网络最终提取出了原始输入的最高级特征,它是一个W x H x D的三维数据体。此时就轮到全连接网络登场了,因为做分类或者回归,是全连接网络的长项。

向全连接网络输入数据,请记得首先将三维数据拉平为一个一维向量。

为什么深度CNN可以训练

“深度网络的训练存在各种障碍与困难”,我们在2 消失的梯度中曾讨论过。可是到了CNN这里,少则不低于四层,多则上百层,深度的问题似乎自动解决了,这是为什么?如果不考虑数据量大与运算能力强,卷积神经网络从理论上是如何克服深度问题的?

遗憾的是,确切的原因并不完全清楚。我们所了解的一些不充分(必要)的原因有:

  • 网络各层参数量级的有效控制。这得益于卷积层的共享权重和偏置。以之前MNIST识别所采用的全连接网络为例,在输入长度为784,第一个隐藏层为30个神经元的情况下,就已经产生了23520个权重。而CNN的第一个隐藏层,使用32个5x5x1滤波器,权重数量仅有800个;
  • ReLU等改进方法的应用使网络计算效率更高;
  • 其他烧脑的思考留给科学家们吧;

最后值得一提的是,虽然卷积神经网络是基于生物视觉系统启发的,但是在现实应用中,它不仅能够处理二维图像数据,对于任何具有清晰网格结构的数据它都能进行学习,这种普适性使其能够脱离生物神经科学范畴,成为了一种通用的人工智能方法。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-10-27,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 人工智能LeadAI 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
人工智能与机器学习
提供全球领先的人脸识别、文字识别、图像识别、语音技术、NLP、人工智能服务平台等多项人工智能技术,共享 AI 领域应用场景和解决方案。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档