前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >[数据清洗]- Pandas 清洗“脏”数据(二)

[数据清洗]- Pandas 清洗“脏”数据(二)

作者头像
数据分析
发布2018-03-01 17:01:39
2.1K0
发布2018-03-01 17:01:39
举报
文章被收录于专栏:数据分析

概要

  • 了解数据
  • 分析数据问题
  • 清洗数据
  • 整合代码

了解数据

在处理任何数据之前,我们的第一任务是理解数据以及数据是干什么用的。我们尝试去理解数据的列/行、记录、数据格式、语义错误、缺失的条目以及错误的格式,这样我们就可以大概了解数据分析之前要做哪些“清理”工作。

本次我们需要一个 patient_heart_rate.csv (链接:https://pan.baidu.com/s/1geX8oYf 密码:odj0)的数据文件,这个数据很小,可以让我们一目了然。这个数据是 csv 格式。数据是描述不同个体在不同时间的心跳情况。数据的列信息包括人的年龄、体重、性别和不同时间的心率。

代码语言:javascript
复制
import pandas as pd
df = pd.read_csv('../data/patient_heart_rate.csv')
df.head()

分析数据问题

  1. 没有列头
  2. 一个列有多个参数
  3. 列数据的单位不统一
  4. 缺失值
  5. 空行
  6. 重复数据
  7. ASCII 字符
  8. 有些列头应该是数据,而不应该是列名参数

清洗数据

下面我们就针对上面的问题一一击破。

1. 没有列头

如果我们拿到的数据像上面的数据一样没有列头,Pandas 在读取 csv 提供了自定义列头的参数。下面我们就通过手动设置列头参数来读取 csv,代码如下:

代码语言:javascript
复制
import pandas as pd
# 增加列头
column_names= ['id', 'name', 'age', 'weight','m0006','m0612','m1218','f0006','f0612','f1218']
df = pd.read_csv('../data/patient_heart_rate.csv', names = column_names)
df.head()

上面的结果展示了我们自定义的列头。我们只是在这次读取 csv 的时候,多了传了一个参数 names = column_names,这个就是告诉 Pandas 使用我们提供的列头。

2. 一个列有多个参数

在数据中不难发现,Name 列包含了两个参数 Firtname 和 Lastname。为了达到数据整洁目的,我们决定将 name 列拆分成 Firstname 和 Lastname

从技术角度,我们可以使用 split 方法,完成拆分工作。

我们使用 str.split(expand=True),将列表拆成新的列,再将原来的 Name 列删除

代码语言:javascript
复制
# 切分名字,删除源数据列
df[['first_name','last_name']] = df['name'].str.split(expand=True)
df.drop('name', axis=1, inplace=True)

上面就是执行执行代码之后的结果。

3. 列数据的单位不统一

如果仔细观察数据集可以发现 Weight 列的单位不统一。有的单位是 kgs,有的单位是 lbs

代码语言:javascript
复制
# 获取 weight 数据列中单位为 lbs 的数据
rows_with_lbs = df['weight'].str.contains('lbs').fillna(False)
df[rows_with_lbs]

为了解决这个问题,将单位统一,我们将单位是 lbs 的数据转换成 kgs。

代码语言:javascript
复制
# 将 lbs 的数据转换为 kgs 数据

for i,lbs_row in df[rows_with_lbs].iterrows():
weight = int(float(lbs_row['weight'][:-3])/2.2)
df.at[i,'weight'] = '{}kgs'.format(weight) 

4. 缺失值

在数据集中有些年龄、体重、心率是缺失的。我们又遇到了数据清洗最常见的问题——数据缺失。一般是因为没有收集到这些信息。我们可以咨询行业专家的意见。典型的处理缺失数据的方法:

5. 空行

仔细对比会发现我们的数据中一行空行,除了 index 之外,全部的值都是 NaN。

Pandas 的 read_csv() 并没有可选参数来忽略空行,这样,我们就需要在数据被读入之后再使用 dropna() 进行处理,删除空行.

代码语言:javascript
复制
# 删除全空的行
df.dropna(how='all',inplace=True) 

6. 重复数据

有的时候数据集中会有一些重复的数据。在我们的数据集中也添加了重复的数据。

首先我们校验一下是否存在重复记录。如果存在重复记录,就使用 Pandas 提供的 drop_duplicates() 来删除重复数据。

代码语言:javascript
复制
# 删除重复数据行
df.drop_duplicates(['first_name','last_name'],inplace=True)

7. ASCII 字符

在数据集中 Fristname 和 Lastname 有一些非 ASCII 的字符。

处理非 ASCII 数据方式有多种

  • 删除
  • 替换
  • 仅仅提示一下

我们使用删除的方式:

代码语言:javascript
复制
# 删除非 ASCII 字符
df['first_name'].replace({r'[^\x00-\x7F]+':''}, regex=True, inplace=True)
df['last_name'].replace({r'[^\x00-\x7F]+':''}, regex=True, inplace=True)

8. 有些列头应该是数据,而不应该是列名参数

有一些列头是有性别和时间范围组成的,这些数据有可能是在处理收集的过程中进行了行列转换,或者收集器的固定命名规则。这些值应该被分解为性别(m,f),小时单位的时间范围(00-06,06-12,12-18)

代码语言:javascript
复制
# 切分 sex_hour 列为 sex 列和 hour 列
sorted_columns = ['id','age','weight','first_name','last_name']
df = pd.melt(df,
id_vars=sorted_columns,var_name='sex_hour',value_name='puls_rate').sort_values(sorted_columns)
df[['sex','hour']] = df['sex_hour'].apply(lambda x:pd.Series(([x[:1],'{}-{}'.format(x[1:3],x[3:])])))[[0,1]]
df.drop('sex_hour', axis=1, inplace=True)
​
# 删除没有心率的数据
row_with_dashes = df['puls_rate'].str.contains('-').fillna(False)
df.drop(df[row_with_dashes].index,
inplace=True)
代码语言:javascript
复制

 整合代码

代码语言:javascript
复制
import pandas as pd
# 增加列头
column_names= ['id', 'name', 'age', 'weight','m0006','m0612','m1218','f0006','f0612','f1218']
df = pd.read_csv('../data/patient_heart_rate.csv', names = column_names)
​
# 切分名字,删除源数据列
df[['first_name','last_name']] = df['name'].str.split(expand=True)
df.drop('name', axis=1, inplace=True)
​
# 获取 weight 数据列中单位为 lbs 的数据
rows_with_lbs = df['weight'].str.contains('lbs').fillna(False)
df[rows_with_lbs]
​
# 将 lbs 的数据转换为 kgs 数据
for i,lbs_row in df[rows_with_lbs].iterrows():
weight = int(float(lbs_row['weight'][:-3])/2.2)
df.at[i,'weight'] = '{}kgs'.format(weight)
 
# 删除全空的行
df.dropna(how='all',inplace=True)
​
# 删除重复数据行
df.drop_duplicates(['first_name','last_name'],inplace=True)
​
# 删除非 ASCII 字符
df['first_name'].replace({r'[^\x00-\x7F]+':''}, regex=True, inplace=True)
df['last_name'].replace({r'[^\x00-\x7F]+':''}, regex=True, inplace=True)
​
# 切分 sex_hour 列为 sex 列和 hour 列
sorted_columns = ['id','age','weight','first_name','last_name']
df = pd.melt(df,
id_vars=sorted_columns,var_name='sex_hour',value_name='puls_rate').sort_values(sorted_columns)
df[['sex','hour']] = df['sex_hour'].apply(lambda x:pd.Series(([x[:1],'{}-{}'.format(x[1:3],x[3:])])))[[0,1]]
df.drop('sex_hour', axis=1, inplace=True)
​
# 删除没有心率的数据
row_with_dashes = df['puls_rate'].str.contains('-').fillna(False)
df.drop(df[row_with_dashes].index,
inplace=True)
​
# 重置索引,不做也没关系,主要是为了看着美观一点
df = df.reset_index(drop=True)
print(df)

还有一些问题在本例中没有提及内容,下面有两个比较重要,也比较通用的问题:

  • 日期的处理
  • 字符编码的问题

本次又介绍了一些关于 Pandas 清洗数据的技能。至少用这几次介绍的处理方法,应该可以对数据做很多清洗工作。

更多关于数据清洗的内容可以关注知乎上的专栏“数据清洗

知乎数据清洗- Pandas 清洗“脏”数据(二)

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2018-01-04 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 概要
  • 了解数据
  • 分析数据问题
  • 清洗数据
  •  整合代码
相关产品与服务
腾讯云 BI
腾讯云 BI(Business Intelligence,BI)提供从数据源接入、数据建模到数据可视化分析全流程的BI能力,帮助经营者快速获取决策数据依据。系统采用敏捷自助式设计,使用者仅需通过简单拖拽即可完成原本复杂的报表开发过程,并支持报表的分享、推送等企业协作场景。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档