在静态索引这块,RavenDb其实的是lucene,所以里面有很多概念,其实都是lucene本身的。
1.定义静态Indexes
documentStore.DatabaseCommands.PutIndex(
"BlogPosts/PostsCountByTag",
new IndexDefinitionBuilder<BlogPost, BlogTagPostsCount>
{
// The Map function: for each tag of each post, create a new BlogTagPostsCount
// object with the name of a tag and a count of one.
Map = posts => from post in posts
from tag in post.Tags
select new
{
Tag = tag,
Count = 1
},
// The Reduce function: group all the BlogTagPostsCount objects we got back
// from the Map function, use the Tag name as the key, and sum up all the
// counts. Since the Map function gives each tag a Count of 1, when the Reduce
// function returns we are going to have the correct Count of posts filed under
// each tag.
Reduce = results => from result in results
group result by result.Tag
into g
select new
{
Tag = g.Key,
Count = g.Sum(x => x.Count)
}
});
public class BlogTagPostsCount
{
public string Tag { get; set; }
public int Count { get; set; }
}
2.索引层次化的数据
如下图中的数据,如果我们要索引Comments的话,应该如何索引
{ //posts/123
'Name': 'Hello Raven',
'Comments': [
{
'Author': 'Ayende',
'Text': '...',
'Comments': [
{
'Author': 'Rahien',
'Text': '...',
"Comments": []
}
]
}
]
}
store.DatabaseCommands.PutIndex("SampleRecurseIndex", new IndexDefinition
{
Map = @"from post in docs.Posts
from comment in Recurse(post, (Func<dynamic, dynamic>)(x => x.Comments))
select new
{
Author = comment.Author,
Text = comment.Text
}"
});
当然我们也可以定义一个类
public class SampleRecurseIndex : AbstractIndexCreationTask<Post>
{
public SampleRecurseIndex()
{
Map = posts => from post in posts
from comment in Recurse(post, x => x.Comments)
select new
{
Author = comment.Author,
Text = comment.Text
};
}
}
然后创建new SampleRecurseIndex().Execute(store);
3.索引相关文档
1)第一个例子
这个例子:Invoice和Customer,Invoice当中包含了Customer的Id ,现在我们要通过Customer的姓名来查询invoices
public class Invoice
{
public string Id { get; set; }
public string CustomerId { get; set; }
}
public class Customer
{
public string Id { get; set; }
public string Name { get; set; }
}
public class SampleIndex : AbstractIndexCreationTask<Invoice>
{
public SampleIndex()
{
Map = invoices => from invoice in invoices
select new
{
CustomerId = invoice.CustomerId,
CustomerName = LoadDocument<Customer>(invoice.CustomerId).Name
};
}
}
建立完索引之后,我们就可以客户的名称来查询invoices了
2)第二个例子
public class Book
{
public string Id { get; set; }
public string Name { get; set; }
}
public class Author
{
public string Id { get; set; }
public string Name { get; set; }
public IList<string> BookIds { get; set; }
}
public class AnotherIndex : AbstractIndexCreationTask<Author>
{
public AnotherIndex()
{
Map = authors => from author in authors
select new
{
Name = author.Name,
Books = author.BookIds.Select(x => LoadDocument<Book>(x).Name)
};
}
}
Author当中保存了所有的书的id,通过作者可以查询他出了多少书,通过书名页可以查到作者
这里面需要注意的是:
1)当相关文档变化的时候,索引也会变化
2)使用LoadDocument 去跟踪一个文档,当多个文档跟踪同一个文档的时候,这会变成一个很耗费资源的开销
4.TransformResults
有时候索引非常复杂,但是我们需要的数据比较简单,这个时候我们需要怎么做呢?
public class PurchaseHistoryIndex : AbstractIndexCreationTask<Order, Order>
{
public PurchaseHistoryIndex()
{
Map = orders => from order in orders
from item in order.Items
select new
{
UserId = order.UserId,
ProductId = item.Id
};
TransformResults = (database, orders) =>
from order in orders
from item in order.Items
let product = database.Load<Product>(item.Id)
where product != null
select new
{
ProductId = item.Id,
ProductName = product.Name
};
}
}
我们在查询的时候只需要PurchaseHistoryViewItem,这样子我们就用OfType来进行类型转换。
documentSession.Query<Shipment, PurchaseHistoryIndex>()
.Where(x => x.UserId == userId)
.OfType<PurchaseHistoryViewItem>()
.ToArray();
5.错误处理
当索引出现错误的时候,因为它是由一个后台线程执行的,索引我们很难发现的,通过查看'/stats'表或者 '/raven/studio.html#/statistics'或者'/raven/statistics.html'。
当错误超过15%的时候,索引就会被禁用掉,15%的数量是在前10个文档之后统计的,为了防止一开始的文旦就不好使,就别禁用了。
下面是错误的一些信息,查看'/stats'得到的
{
"LastDocEtag": "00000000-0000-0b00-0000-000000000001",
"LastAttachmentEtag": "00000000-0000-0000-0000-000000000000",
"CountOfIndexes": 1,
"ApproximateTaskCount": 0,
"CountOfDocuments": 1,
"StaleIndexes": [],
"CurrentNumberOfItemsToIndexInSingleBatch": 512,
"CurrentNumberOfItemsToReduceInSingleBatch": 256,
"Indexes":[
{
"Name": "PostsByTitle",
"IndexingAttempts": 1,
"IndexingSuccesses": 0,
"IndexingErrors": 1
}
],
"Errors":[
{
"Index": "PostsByTitle",
"Error": "Cannot perform runtime binding on a null reference",
"Timestamp": "\/Date(1271778107096+0300)\/",
"Document": "bob"
}
]
}
6.查询
在查询当中用 string.Contains()方式是会报错的,因为RavenDb不支持类似通配符*term*这样的方式,这样会引起性能问题,它会抛出NotSupportedException异常。
1)多字段索引
documentStore.DatabaseCommands.PutIndex("UsersByNameAndHobbies", new IndexDefinition
{
Map = "from user in docs.Users select new { user.Name, user.Hobbies }",
Indexes = { { "Name", FieldIndexing.Analyzed }, { "Hobbies", FieldIndexing.Analyzed } }
});
2)多字段查询
users = session.Query<User>("UsersByNameAndHobbies")
.Search(x => x.Name, "Adam")
.Search(x => x.Hobbies, "sport").ToList();
3)相关性加速
通过设置相关性字段,可以减少一些不相关的内容搜索
users = session.Query<User>("UsersByHobbies")
.Search(x => x.Hobbies, "I love sport", boost:10)
.Search(x => x.Hobbies, "but also like reading books", boost:5).ToList();
也可以在索引定义时候设定
public class Users_ByName : AbstractIndexCreationTask<User>
{
public Users_ByName()
{
this.Map = users => from user in users
select new
{
FirstName = user.FirstName.Boost(10),
LastName = user.LastName
};
}
}
4)操作符
AND操作符
users = session.Query<User>("UsersByNameAndHobbiesAndAge")
.Search(x => x.Hobbies, "computers")
.Search(x => x.Name, "James")
.Where(x => x.Age == 20).ToList();
上面的这一句也可以这么写
users = session.Query<User>("UsersByNameAndHobbies")
.Search(x => x.Name, "Adam")
.Search(x => x.Hobbies, "sport", options: SearchOptions.And).ToList();
NOT操作符
users = session.Query<User>("UsersByName")
.Search(x => x.Name, "James", options: SearchOptions.Not).ToList();
多操作符合作
并且不等于
users = session.Query<User>("UsersByNameAndHobbies")
.Search(x => x.Name, "Adam")
.Search(x => x.Hobbies, "sport", options: SearchOptions.Not | SearchOptions.And)
.ToList();
5)通配符,模糊查询
EscapeAll (default),
AllowPostfixWildcard,
AllowAllWildcards,
RawQuery.
users = session.Query<User>("UsersByName")
.Search(x => x.Name, "Jo* Ad*",
escapeQueryOptions:EscapeQueryOptions.AllowPostfixWildcard).ToList();
users = session.Query<User>("UsersByName")
.Search(x => x.Name, "*oh* *da*",
escapeQueryOptions: EscapeQueryOptions.AllowAllWildcards).ToList();
users = session.Query<User>("UsersByName")
.Search(x => x.Name, "*J?n*",
escapeQueryOptions: EscapeQueryOptions.RawQuery).ToList();
6)高亮显示
public class SearchItem
{
public string Id { get; set; }
public string Text { get; set; }
}
public class ContentSearchIndex : AbstractIndexCreationTask<SearchItem>
{
public ContentSearchIndex()
{
Map = (docs => from doc in docs
select new { doc.Text });
Index(x => x.Text, FieldIndexing.Analyzed);
Store(x => x.Text, FieldStorage.Yes);
TermVector(x => x.Text, FieldTermVector.WithPositionsAndOffsets);
}
}
//查询完毕之后进行处理
FieldHighlightings highlightings;
var results = session.Advanced.LuceneQuery<SearchItem>("ContentSearchIndex")
.Highlight("Text", 128, 1, out highlightings)
.Search("Text", "raven")
.ToArray();
var builder = new StringBuilder()
.AppendLine("<ul>");
foreach (var result in results)
{
var fragments = highlightings.GetFragments(result.Id);
builder.AppendLine(string.Format("<li>{0}</li>", fragments.First()));
}
var ul = builder
.AppendLine("</ul>")
.ToString();
//查询时候设置前后符号
FieldHighlightings highlightings;
var results = session.Advanced.LuceneQuery<SearchItem>("ContentSearchIndex")
.Highlight("Text", 128, 1, out highlightings)
.SetHighlighterTags("**", "**")
.Search("Text", "raven")
.ToArray();
7)推荐
下面是用户和基于用户名的索引
public class User
{
public string Id { get; set; }
public string FullName { get; set; }
}
public class Users_ByFullName : AbstractIndexCreationTask<User>
{
public Users_ByFullName()
{
Map = users => from user in users
select new { user.FullName };
Indexes.Add(x => x.FullName, FieldIndexing.Analyzed);
}
}
假设数据库里面存着以下数据:
// users/1
{
"Name": "John Smith"
}
// users/2
{
"Name": "Jack Johnson"
}
// users/3
{
"Name": "Robery Jones"
}
// users/4
{
"Name": "David Jones"
}
你使用了以下的查询语句
var query = session.Query<User, Users_ByFullName>().Where(x => x.FullName == "johne");
var user = query.FirstOrDefault();
如果查询不到,可以使用推荐功能
if (user == null)
{
SuggestionQueryResult suggestionResult = query.Suggest();
Console.WriteLine("Did you mean?");
foreach (var suggestion in suggestionResult.Suggestions)
{
Console.WriteLine("\t{0}", suggestion);
}
}
它会给你推荐
john
jones
johnson
下面是包括全部参数的查询:
session.Query<User, Users_ByFullName>()
.Suggest(new SuggestionQuery()
{
Field = "FullName",
Term = "johne",
Accuracy = 0.4f,
MaxSuggestions = 5,
Distance = StringDistanceTypes.JaroWinkler,
Popularity = true,
});
另外一种查询方式:
store.DatabaseCommands.Suggest("Users/ByFullName", new SuggestionQuery()
{
Field = "FullName",
Term = "johne"
});
多个关键词的推荐:
同时输入johne davi
SuggestionQueryResult resultsByMultipleWords = session.Query<User, Users_ByFullName>()
.Suggest(new SuggestionQuery()
{
Field = "FullName",
Term = "<<johne davi>>",
Accuracy = 0.4f,
MaxSuggestions = 5,
Distance = StringDistanceTypes.JaroWinkler,
Popularity = true,
});
Console.WriteLine("Did you mean?");
foreach (var suggestion in resultsByMultipleWords.Suggestions)
{
Console.WriteLine("\t{0}", suggestion);
}