前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >RavenDb学习(三)静态索引

RavenDb学习(三)静态索引

作者头像
岑玉海
发布2018-03-01 15:09:05
8520
发布2018-03-01 15:09:05
举报
文章被收录于专栏:岑玉海
代码语言:javascript
复制
在静态索引这块,RavenDb其实的是lucene,所以里面有很多概念,其实都是lucene本身的。

1.定义静态Indexes
documentStore.DatabaseCommands.PutIndex(
    "BlogPosts/PostsCountByTag",
    new IndexDefinitionBuilder<BlogPost, BlogTagPostsCount>
    {
        // The Map function: for each tag of each post, create a new BlogTagPostsCount
        // object with the name of a tag and a count of one.
        Map = posts => from post in posts
                       from tag in post.Tags
                       select new
                       {
                           Tag = tag,
                           Count = 1
                       },
 
        // The Reduce function: group all the BlogTagPostsCount objects we got back
        // from the Map function, use the Tag name as the key, and sum up all the
        // counts. Since the Map function gives each tag a Count of 1, when the Reduce
        // function returns we are going to have the correct Count of posts filed under
        // each tag.
        Reduce = results => from result in results
                            group result by result.Tag
                                into g
                                select new
                                {
                                    Tag = g.Key,
                                    Count = g.Sum(x => x.Count)
                                }
    });
public class BlogTagPostsCount
{
    public string Tag { get; set; }
    public int Count { get; set; }
}

2.索引层次化的数据
如下图中的数据,如果我们要索引Comments的话,应该如何索引
{  //posts/123
  'Name': 'Hello Raven',
  'Comments': [
    {
      'Author': 'Ayende',
      'Text': '...',
      'Comments': [
        {
          'Author': 'Rahien',
          'Text': '...',
          "Comments": []
        }
      ]
    }
  ]
}

store.DatabaseCommands.PutIndex("SampleRecurseIndex", new IndexDefinition
{
    Map = @"from post in docs.Posts
            from comment in Recurse(post, (Func<dynamic, dynamic>)(x => x.Comments))
            select new
            {
                Author = comment.Author,
                Text = comment.Text
            }"
});

当然我们也可以定义一个类
public class SampleRecurseIndex : AbstractIndexCreationTask<Post>
{
    public SampleRecurseIndex()
    {
        Map = posts => from post in posts
                       from comment in Recurse(post, x => x.Comments)
                       select new
                       {
                           Author = comment.Author,
                           Text = comment.Text
                       };
    }
}

然后创建new SampleRecurseIndex().Execute(store);

3.索引相关文档

1)第一个例子

这个例子:Invoice和Customer,Invoice当中包含了Customer的Id ,现在我们要通过Customer的姓名来查询invoices
public class Invoice
{
    public string Id { get; set; }
 
    public string CustomerId { get; set; }
}
 
public class Customer
{
    public string Id { get; set; }
 
    public string Name { get; set; }
}

public class SampleIndex : AbstractIndexCreationTask<Invoice>
{
    public SampleIndex()
    {
        Map = invoices => from invoice in invoices
                          select new
                          {
                              CustomerId = invoice.CustomerId,
                              CustomerName = LoadDocument<Customer>(invoice.CustomerId).Name
                          };
    }
}

建立完索引之后,我们就可以客户的名称来查询invoices了 

2)第二个例子
public class Book
{
    public string Id { get; set; }
     
    public string Name { get; set; }
}
 
public class Author
{
    public string Id { get; set; }
 
    public string Name { get; set; }
 
    public IList<string> BookIds { get; set; }
}

public class AnotherIndex : AbstractIndexCreationTask<Author>
{
    public AnotherIndex()
    {
        Map = authors => from author in authors
                         select new
                             {
                                 Name = author.Name,
                                 Books = author.BookIds.Select(x => LoadDocument<Book>(x).Name)
                             };
    }
}

Author当中保存了所有的书的id,通过作者可以查询他出了多少书,通过书名页可以查到作者

这里面需要注意的是:
1)当相关文档变化的时候,索引也会变化
2)使用LoadDocument 去跟踪一个文档,当多个文档跟踪同一个文档的时候,这会变成一个很耗费资源的开销

4.TransformResults 
有时候索引非常复杂,但是我们需要的数据比较简单,这个时候我们需要怎么做呢?
public class PurchaseHistoryIndex : AbstractIndexCreationTask<Order, Order>
{
    public PurchaseHistoryIndex()
    {
        Map = orders => from order in orders
                        from item in order.Items
                        select new
                        {
                            UserId = order.UserId,
                            ProductId = item.Id
                        };
 
        TransformResults = (database, orders) =>
                           from order in orders
                           from item in order.Items
                           let product = database.Load<Product>(item.Id)
                           where product != null
                           select new
                           {
                               ProductId = item.Id,
                               ProductName = product.Name
                           };
    }
}

我们在查询的时候只需要PurchaseHistoryViewItem,这样子我们就用OfType来进行类型转换。
documentSession.Query<Shipment, PurchaseHistoryIndex>()
    .Where(x => x.UserId == userId)
    .OfType<PurchaseHistoryViewItem>()
    .ToArray();

5.错误处理
当索引出现错误的时候,因为它是由一个后台线程执行的,索引我们很难发现的,通过查看'/stats'表或者 '/raven/studio.html#/statistics'或者'/raven/statistics.html'。
当错误超过15%的时候,索引就会被禁用掉,15%的数量是在前10个文档之后统计的,为了防止一开始的文旦就不好使,就别禁用了。
下面是错误的一些信息,查看'/stats'得到的
{
    "LastDocEtag": "00000000-0000-0b00-0000-000000000001",
    "LastAttachmentEtag": "00000000-0000-0000-0000-000000000000",
    "CountOfIndexes": 1,
    "ApproximateTaskCount": 0,
    "CountOfDocuments": 1,
    "StaleIndexes": [],
    "CurrentNumberOfItemsToIndexInSingleBatch": 512,
    "CurrentNumberOfItemsToReduceInSingleBatch": 256,
    "Indexes":[
        {
            "Name": "PostsByTitle",
            "IndexingAttempts": 1,
            "IndexingSuccesses": 0,
            "IndexingErrors": 1
        }
    ],
    "Errors":[
        {
            "Index": "PostsByTitle",
            "Error": "Cannot   perform   runtime   binding   on   a   null   reference",
            "Timestamp": "\/Date(1271778107096+0300)\/",
            "Document": "bob"
        }
    ]
}

6.查询

在查询当中用 string.Contains()方式是会报错的,因为RavenDb不支持类似通配符*term*这样的方式,这样会引起性能问题,它会抛出NotSupportedException异常。

1)多字段索引
documentStore.DatabaseCommands.PutIndex("UsersByNameAndHobbies", new IndexDefinition
{
    Map = "from user in docs.Users select new { user.Name, user.Hobbies }",
    Indexes = { { "Name", FieldIndexing.Analyzed }, { "Hobbies", FieldIndexing.Analyzed } }
});

2)多字段查询
users = session.Query<User>("UsersByNameAndHobbies")
               .Search(x => x.Name, "Adam")
               .Search(x => x.Hobbies, "sport").ToList();

3)相关性加速
通过设置相关性字段,可以减少一些不相关的内容搜索
users = session.Query<User>("UsersByHobbies")
               .Search(x => x.Hobbies, "I love sport", boost:10)
               .Search(x => x.Hobbies, "but also like reading books", boost:5).ToList();

也可以在索引定义时候设定
public class Users_ByName : AbstractIndexCreationTask<User>
{
    public Users_ByName()
    {
        this.Map = users => from user in users
                            select new
                                {
                                    FirstName = user.FirstName.Boost(10),
                                    LastName = user.LastName
                                };
    }
}

4)操作符
AND操作符
users = session.Query<User>("UsersByNameAndHobbiesAndAge")
               .Search(x => x.Hobbies, "computers")
               .Search(x => x.Name, "James")
               .Where(x => x.Age == 20).ToList();

上面的这一句也可以这么写
users = session.Query<User>("UsersByNameAndHobbies")
               .Search(x => x.Name, "Adam")
               .Search(x => x.Hobbies, "sport", options: SearchOptions.And).ToList();

NOT操作符
users = session.Query<User>("UsersByName")
        .Search(x => x.Name, "James", options: SearchOptions.Not).ToList();

多操作符合作
并且不等于
users = session.Query<User>("UsersByNameAndHobbies")
        .Search(x => x.Name, "Adam")
        .Search(x => x.Hobbies, "sport", options: SearchOptions.Not | SearchOptions.And)
        .ToList();

5)通配符,模糊查询
EscapeAll (default),
AllowPostfixWildcard,
AllowAllWildcards,
RawQuery.
users = session.Query<User>("UsersByName")
    .Search(x => x.Name, "Jo* Ad*",
            escapeQueryOptions:EscapeQueryOptions.AllowPostfixWildcard).ToList();

users = session.Query<User>("UsersByName")
    .Search(x => x.Name, "*oh* *da*",
            escapeQueryOptions: EscapeQueryOptions.AllowAllWildcards).ToList();

users = session.Query<User>("UsersByName")
    .Search(x => x.Name, "*J?n*",
            escapeQueryOptions: EscapeQueryOptions.RawQuery).ToList();

6)高亮显示

public class SearchItem
{
    public string Id { get; set; }
 
    public string Text { get; set; }
}
 
public class ContentSearchIndex : AbstractIndexCreationTask<SearchItem>
{
    public ContentSearchIndex()
    {
        Map = (docs => from doc in docs
                       select new { doc.Text });
 
        Index(x => x.Text, FieldIndexing.Analyzed);
        Store(x => x.Text, FieldStorage.Yes);
        TermVector(x => x.Text, FieldTermVector.WithPositionsAndOffsets);
    }
}
//查询完毕之后进行处理
FieldHighlightings highlightings;
var results = session.Advanced.LuceneQuery<SearchItem>("ContentSearchIndex")
                 .Highlight("Text", 128, 1, out highlightings)
                 .Search("Text", "raven")
                 .ToArray();
 
var builder = new StringBuilder()
    .AppendLine("<ul>");
 
foreach (var result in results)
{
    var fragments = highlightings.GetFragments(result.Id);
    builder.AppendLine(string.Format("<li>{0}</li>", fragments.First()));
}
 
var ul = builder
    .AppendLine("</ul>")
    .ToString();

//查询时候设置前后符号
FieldHighlightings highlightings;
var results = session.Advanced.LuceneQuery<SearchItem>("ContentSearchIndex")
                 .Highlight("Text", 128, 1, out highlightings)
                 .SetHighlighterTags("**", "**")
                 .Search("Text", "raven")
                 .ToArray();

7)推荐

下面是用户和基于用户名的索引
public class User
{
    public string Id { get; set; }
    public string FullName { get; set; }
}

public class Users_ByFullName : AbstractIndexCreationTask<User>
{
    public Users_ByFullName()
    {
        Map = users => from user in users
                       select new { user.FullName };
 
        Indexes.Add(x => x.FullName, FieldIndexing.Analyzed);
    }
}

假设数据库里面存着以下数据:
// users/1
{
    "Name": "John Smith"
}
// users/2
{
    "Name": "Jack Johnson"
}
// users/3
{
    "Name": "Robery Jones"
}
// users/4
{
    "Name": "David Jones"
}

你使用了以下的查询语句
var query = session.Query<User, Users_ByFullName>().Where(x => x.FullName == "johne");
var user = query.FirstOrDefault();

如果查询不到,可以使用推荐功能
if (user == null)
{
    SuggestionQueryResult suggestionResult = query.Suggest();
 
    Console.WriteLine("Did you mean?");
 
    foreach (var suggestion in suggestionResult.Suggestions)
    {
        Console.WriteLine("\t{0}", suggestion);
    }
}

它会给你推荐
 john
 jones
 johnson
下面是包括全部参数的查询:
session.Query<User, Users_ByFullName>()
       .Suggest(new SuggestionQuery()
                    {
                        Field = "FullName",
                        Term = "johne",
                        Accuracy = 0.4f,
                        MaxSuggestions = 5,
                        Distance = StringDistanceTypes.JaroWinkler,
                        Popularity = true,
                    });
另外一种查询方式:
store.DatabaseCommands.Suggest("Users/ByFullName", new SuggestionQuery()
                                                   {
                                                       Field = "FullName",
                                                       Term = "johne"
                                                   });

多个关键词的推荐:
同时输入johne davi
SuggestionQueryResult resultsByMultipleWords = session.Query<User, Users_ByFullName>()
       .Suggest(new SuggestionQuery()
       {
           Field = "FullName",
           Term = "<<johne davi>>",
           Accuracy = 0.4f,
           MaxSuggestions = 5,
           Distance = StringDistanceTypes.JaroWinkler,
           Popularity = true,
       });
 
Console.WriteLine("Did you mean?");
 
foreach (var suggestion in resultsByMultipleWords.Suggestions)
{
    Console.WriteLine("\t{0}", suggestion);
}
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2014-02-01 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
数据库
云数据库为企业提供了完善的关系型数据库、非关系型数据库、分析型数据库和数据库生态工具。您可以通过产品选择和组合搭建,轻松实现高可靠、高可用性、高性能等数据库需求。云数据库服务也可大幅减少您的运维工作量,更专注于业务发展,让企业一站式享受数据上云及分布式架构的技术红利!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档