Loading [MathJax]/jax/output/CommonHTML/config.js
首页
学习
活动
专区
圈层
工具
发布
首页
学习
活动
专区
圈层
工具
MCP广场
社区首页 >专栏 >谷歌人工智能算法RankBrain运行原理解析

谷歌人工智能算法RankBrain运行原理解析

作者头像
CSDN技术头条
发布于 2018-02-11 02:05:22
发布于 2018-02-11 02:05:22
1.2K0
举报
文章被收录于专栏:CSDN技术头条CSDN技术头条

近日,新闻爆料说谷歌正在使用一个机器学习人工智能系统“RankBrain”来对搜索结果排序。想知道它的工作原理以及如何在谷歌排序系统上运行吗?以下是我们对RankBrain的全部了解。

下面的信息来自于三个不同的地方。第一个,Bloomberg story,昨天发布了谷歌RankBrain的新闻(也可以看看我们写的文章)。第二个,谷歌目前直接提供给Search Engine Land的其他信息。第三个,我们自己的知识,和对谷歌没有回答的问题的猜测。在必要时,我们要明确任何一个来源不会作为背景资料使用。

什么是RankBrain?

Bloomberg报道说,RankBrain是一个谷歌机器学习人工智能系统的名称,用于帮助处理搜索结果,这得到了谷歌的肯定。

什么是机器学习?

机器学习是计算机教自己如何处理事情,而不是由人类告知或是遵循固定的程序。

什么是人工智能?

真正的人工智能,或简称AI,是计算机能和人类一样聪明,至少在获取知识方面,通过学习或者建立在知识库的基础上得到新的联系。

当然,真正的AI只存在于科幻小说里。事实上,AI是设计成能够学习和做出联系的计算机系统。

AI与机器学习有什么不同呢?就RankBrain而言,给我们的感觉好像是它们是等同的。你可能会听到它们交替使用,或是听到使用机器学习来描述人工智能方法的使用。

那么RankBrain是谷歌Ranks搜索结果的新方式吗?

不,RankBrain只是谷歌众多搜索算法的一部分,它是一套计算机程序,能把知识库中上十亿个页面进行排序,然后找到与特定查询最相关的结果。

谷歌搜索算法的名字是什么?

我们过去报道过,它叫做 蜂鸟( Hummingbird)。许多年来,整个算法没有一个正式的名称。但在2013年中,谷歌对这个算法进行了彻底检修,并命名它为蜂鸟。

那么RankBrain是谷歌蜂鸟搜索算法的一部分么?

这是我们的理解。蜂鸟是整个搜索算法,就好比车里面有个引擎。引擎本身可能由许多部分组成,比如滤油器,燃油泵,散热器等。同理,蜂鸟也由多个部分组成,RankBrain就是其中一个最新组成部分。

特别指出,我们知道RankBrain是整个蜂鸟算法的一部分是因为Bloomberg文章明确指出RankBrain不能处理所有的搜索,只有整个算法可以。

蜂鸟同时包含其他的部分,这些名字对 SEO圈的人来说已经耳熟能详了,比如 Panda, Penguin和 Payday,用于垃圾邮件过滤, Pigeon用于优化本地结果, Top Heavy用于给广告太多的页面降级, Mobile Friendly用于给移动友好型页面加分, Pirate用于打击版权侵犯。

我认为谷歌算法曾被称为PageRank

PageRank是整个蜂鸟算法的一部分,它使用特定的方式给网页信用排序,基于其他页面指向此页面的链接来计算。

PageRank比较特别,因为它是谷歌有史以来给它的排序算法赋予的第一个名字,这个名字早在1998年谷歌创立的时候就有了。

谷歌用于排序的“信号”是什么?

谷歌使用信号来决定如何为网页排序。比如,它会读取网页上的词语,那么词语就是一个信号。如果某些词语是粗体,那么这又是一个值得注意的信号。计算的结果作为PageRank的一部分,给一个网页设定一个PageRank分数,这作为一个信号。如果一张网页被检测到是移动友好型的,那么这又会成为一个信号。

所有的这些信号都由蜂鸟算法中的各个部分处理,最后决定针对不同搜索返回哪些网页。

一共有多少种信号?

谷歌称进行评估的主要排序信号大约有 200多种,反过来, 可能有上万种变种信号或者子信号。但通常是说几百种,正如昨天Bloomberg文章中说的那样。

如果你想有一个更直观的排序信号向导,来看看我们的 SEO成功因素元素周期表:

我们认为这是个非常好的向导,说明了类似谷歌的搜索引擎对网页排序使用的东西。

RankBrain是第三个最重要的信号?

没错。这个新的系统突然冒出来,已经成为网页排序第三个最重要的因素。以下摘自Bloomberg 文章:

Corrado说,RankBrain是上百个信号中的一个,用于在算法中决定哪些结果该展示在谷歌搜索页面,该排在第几位。他还表示,在RankBrain部署的这几个月里,它已经成为为搜索查询提供结果的第三个最重要的信号。

第一和第二个最重要的信号是什么?

我们询问了两次,但是谷歌还是不愿意告诉我们第一和第二个最重要的信号是什么。

这很烦人而且有点误导人。Bloomberg文章也不出意外没能得到答案。谷歌想要提高一些性能需求来作为机器学习的突破。

但是真正评估这种突破,有助于了解谷歌现在使用的其他最重要的因素,包括被RankBrain超过的因素。这就是为什么谷歌要来解释这些因素来衬托前两个最重要的信号的性能。

顺便提一下,我个人猜测链接仍然是最重要的信号。谷歌以投票的形式统计这些链接。这也是一个非常老的系统,我在以前的一篇文章里做了介绍: The Broken “Ballot Box” Used By Google & Bing。

至于第二个最重要的信号,我认为是“词语”,词语将会包含一切信息,从网页上的词语到RankBrain分析之外的人们字搜索框输入的关键字。

RankBrain到底做什么?

从与谷歌的来往电子邮件之中,我了解到RankBrain主要用于翻译人们可能不清楚该输入什么确切词语的搜索词条。

难道谷歌之前没有处理没有确切查询词条的方式吗?

有,谷歌很早就找到不根据具体词条搜索页面的方式。比如,许多年前,如果你输入“鞋”(shoe),谷歌可能不会找到那些有“鞋”(shoes)的页面,因为从技术上来说这是两个不同的词汇,但是“stemming”使得谷歌变得更聪明,让引擎了解shoes的词根是shoe,就像“running”的词根是“run”。谷歌同样了解同义词,因此,如果你搜索“运动鞋”,它可能知道你想找“跑鞋”。它甚至有概念性的知识,知道哪些网页是关于“苹果”公司,哪些是关于水果“苹果”的。

Knowledge Graph是什么?

Knowledge Graph在2012年推出,使谷歌在处理词汇关联方面更出色。更重要的是,谷歌说它学会如何搜索事物而不是苍白的字符串。

字符串意味着只按照字符串本身搜索,比如搜索匹配“Obama”字符串的网页。而事物则是谷歌知道当某人搜索“Obama”的时候,他们可能想找的是美利坚总统巴拉克奥巴马,一个与其他人物和事物关联的实实在在的人物。

Knowledge Graph是一个事实数据库,包含世上万物的内在联系。这就是为什么当你输入“when was the wife of obama born”的时候,你可以在下面看到关于米歇尔奥巴马的信息,而不需要特定输入她的名字:

RankBrain如何帮助提炼搜索?

谷歌目前提炼搜索的方法一般都是由人工处理,无论是创建词干列表或者同义词列表或者创建事物关联数据库。当然,这其中有一些自动化的操作,但是很多时候都是靠人工来完成。

问题是, 谷歌每天要处理30亿条搜索。2007年, 谷歌表示,有20%至25%的搜索是从来没见过的。2013年这个数字 降至15%,这也引用在了昨天的Bloomberg 文章中,我们也得到了谷歌的重新证实。但是30亿之中,15%的从未搜索过的词条仍然是非常大的数目——每天4.5亿条。

这些可能是很复杂的搜索,多字查询,或者是“long-tail”查询。RankBrain旨在帮助更好地解释这些查询,并有效地翻译它们,通过查询关键字背后的信息,找到最合适的网页。

谷歌告诉我们,它可以观察到看似无关复杂搜索之间的模式,并理解它们实际上是如何彼此关联的。这种学习方式,又让它更好地理解未来复杂搜索,以及知道它们是否与特定主题相关。最重要的是,它还可以将这些搜索组与它认为最匹配的搜索结果关联起来。

谷歌并没有给出搜索组的例子,也没详细说明RankBrain如何猜到哪些是最匹配的页面。后者可能是因为如果它可以将模糊搜索转化成某些更具体的东西,那么它就可以得到更好的答案。

来看看一个例子?

虽然谷歌并没有给出搜索组的例子,但是Bloomberg文章里有一个单个搜索的例子,假设得到了RankBrain的帮助。如下:

What’s the title of the consumer at the highest level of a food chain

像我这样的外行,“consumer”听起来像是买东西的人。然而,这也是个科学术语,表示消耗食物的东西。在食物链中同样有不同等级的消费者。最高等级的消费者?就叫做“捕食者”(predator)。

把这个输入谷歌中,我们得到了不错的答案,虽然这个查询语句本身看起来十分古怪:

现在来看看搜索“top level of the food chain”的结果相似性,如下:

设想下,RankBrain将原本那条冗长且复杂的查询关联到了这条更短的上面,这可能是最常见的做法。它知道它们非常相似。所以结果是,谷歌可以利用它所知的一切,从更常见的查询中寻找答案,然后将它提供给不常见的查询。

我要强调,我并不知道RankBrain关联了这两条查询。我只知道谷歌给出了第一个例子。而这只是对RankBrain如何将不常见搜索与常见搜索联系来提高搜索质量的一种说明而已。

Bing使用RankNet同样可以达到这种效果吗?

回到2005年,微软开始使用自己的机器学习系统,名叫RankNet,如今已是Bing搜索引擎的一部分。事实上,RankNet的首席研究员和创始人最近才被肯定。但这些年来,微软几乎没有谈到RankNet。

你可以打赌,这将有可能改变。有趣的是,当我在Bing中输入同样的词条的时候,Bing得到了不错的结果,其中一条与谷歌返回的结果一致。

一条查询并不意味着Bing的RankNet和谷歌的RankBrain同样出色,反之亦然。不幸的是,很难拿出一份清单来做这种比较。

还有更多的例子吗?

谷歌的确给出了一个新的案例:“How many tablespoons in a cup?”谷歌表示,对来自于澳大利亚和美国搜索会有不同的结果,因为两个国家的度量标准不同,尽管名称类似。

为了测试这点,我在Google.com和澳大利亚版本的Google上分别搜索。我并没有发现太多的不同。即使没有RankBrain,结果通常会不同,仅仅因为使用“老土”的方式,从澳大利亚网站中为使用澳大利亚版本Google搜索的用户呈现页面。

RankBrain真的有帮助吗?

尽管我上面给出的两个例子不足以说明RankBrain的强大,但我确实相信它可能正在产生巨大的影响,正如谷歌宣称的那样。谷歌在选择什么算法来排序方面相当保守。谷歌总是在做小测试。但是当对此算法有很大信心时,使用这个算法会带来极大的突破。

整合RankBrain,把它作为第三个最重要的信号,是一个巨大的变化。我认为,如果它没有帮助的话谷歌也不会使用它。

RankBrain什么时候开始的?

谷歌告诉我们,在2015年初的时候就在逐步推出RankBrain,现已全面部署了好几个月了。

哪些查询受到影响?

谷歌告诉Bloomberg说,有相当一部分的查询将由RankBrain来处理。我们询问具体数字,但还是得到同样的答案。

RankBrain一直在学习吗?

谷歌说,RankBrain所有的学习都是离线完成的。输入多批次历史搜索记录,然后学习使用这些数据做出预测。

测试这些预测,如果预测效果准确,那么学习之后的RankBrain版本就上线。然后离线学习测试的过程重复进行。

RankBrain除了做查询优化还做了其他的吗?

通常情况下,一条查询如何优化的——无论是通过提取词根,同义词还是RankBrain——不会作为排序因素或信号。

信号是绑定内容的典型因素,比如网页上的词语,指向页面的链接,网页是否部署在安全的服务器上等。它们也可以绑定用户,比如用户地理位置信息或搜索浏览历史。

那么当谷歌提及RankBrain是第三个最重要的信号时,它真的是一个排序信号吗?是的,谷歌再次确认说,他们有一个组件,RankBrain以某种方式直接来计算网页的排名。

具体如何做的呢?是否有某种“RankBrain分数”的因子可能来评估网页质量呢?有可能吧,但RankBrain似乎更可能基于网页包含的内容以某种方式帮助谷歌更好地分类页面。RankBrain可能比谷歌已有的系统更好地总结网页内容。

或许也不是这样,谷歌只是说有某种排序组件。

我怎么了解RankBrain更多的信息?

谷歌告诉我们说,如果想要了解词语“向量”——单词和短语用数学连接的方式——应该看看这个 博客,这篇博客讲述了系统(文章中没有说明是RankBrain)如何仅仅通过扫描新闻学习到国家的省会城市:

有一篇更长的研究论文,基于 此。你可以使用谷歌的 word2vec工具玩转自己的机器学习工程。另外,谷歌有 一整块区域是关于人工智能和机器学习论文的,微软也一样。

原文链接: FAQ: All About The New Google RankBrain Algorithm(译者/刘翔宇 审校/刘帝伟、朱正贵 责编/周建丁) 

关于译者: 刘翔宇,中通软开发工程师,关注机器学习、神经网络、模式识别。 

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2015-11-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 CSDN技术头条 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
暂无评论
推荐阅读
编辑精选文章
换一批
Google 全面转向人工智能,机器学习高管接管搜索引擎
2016年2月4日,Google 搜索业务负责人 Amit Singhal 即将退休,公司机器学习业务高管 John Giannandrea 将接任其职位。 Amit Singhal 从 2000 年加入 Google,并且改写了 Google 创始人 Larry Page 和 Sergey Brin 最开始写好的搜索引擎算法。自那时以来,Singhal 就一直负责 Google 的搜索引擎业务。 在 Amit Singhal 负责 Google 搜索引擎期间,一个很出名的故事是 2013 年仅一年,就对搜
新智元
2018/03/14
7830
Google 全面转向人工智能,机器学习高管接管搜索引擎
【深度解析】谷歌搜索算法如何排名医疗广告?
【新智元导读】青年魏则西的不幸病逝激起了国内公众对搜索引擎虚假医疗网络广告问题的热议。提到搜索引擎,必须想到谷歌,那么谷歌是如何处理医疗广告的呢,答案是使用机器学习的RankBrain算法。 青年魏
新智元
2018/03/22
9230
【深度解析】谷歌搜索算法如何排名医疗广告?
关于人工智能-微软和谷歌没有告诉你的是什么
2018年9月,iFlytek,一家中国技术公司,人工智能的全球领导者(尤其是语音识别软件)在上海举行的技术会议上被指责将人工翻译伪装成机器翻译。举报人是Bell Wang,他正在会议上进行现场翻译。他注意到iFlytek在公司品牌标识旁边的屏幕上使用他的翻译作为实时字幕。这表明翻译后的输出是由他们的AI系统产生的,而不是由Wang产生的。
银河1号
2019/04/12
5420
关于人工智能-微软和谷歌没有告诉你的是什么
深度学习驱动智能搜索引擎,RankBrain革了SEO的命
【新智元导读】想在谷歌或百度等搜索结果中排名靠前,除了广告(给钱),你还可以选择SEO(搜索引擎优化):让网站符合算法的规则,提升在搜索引擎内的自然排名。但去年开始,谷歌使用以深度学习为基础的人工智能核心搜索算法RankBrain,本文认为这种越来越“类人化”的算法个性定制每个搜索结果,每个网站的排名都变得看似更加随机,在搜索引擎中“钻空子”难度将越来越大,SEO将持续极端技术化,只有把握好分析和大数据做SEO,才有望获得巨大收益。 RankBrain还是一种弱人工智能 如今,每个人都听说过谷歌的 Ran
新智元
2018/03/26
9920
深度学习驱动智能搜索引擎,RankBrain革了SEO的命
谷歌搜索中的人工智能
作者 | Henny Jones 译者 | 平川 策划 | 刘燕 本文最初发布于 HData Systems 博客,经 InfoQ 翻译。 我们每个人都知道谷歌是做什么的。你可能就是在谷歌的帮助下找到这篇博文的。真的,谷歌搜索结果的准确性令人折服。谷歌搜索实际上是一个搜索引擎。虽然它是我们生活中不可分割的一部分,但对于搜索引擎,我们大多数人了解得并不多。 搜索引擎有许多,如雅虎、必应和 Ask.com,但我们甚至不知道或从未使用过,因为我们对 Google.com 如此习惯。我们迷上谷歌的原因之一是,我们认
深度学习与Python
2023/03/29
4880
谷歌搜索中的人工智能
人工智能将如何革新数字营销领域?
当数字营销人员想到“人工智能”,他们会马上联想到“RankBrain”算法。 2015年,Google推出了RankBrain,一种能自动回复用户的机器学习系统。RankBrain利用人工智能来理解用
iCDO互联网数据官
2018/04/18
1.5K0
人工智能将如何革新数字营销领域?
谷歌搜索秘籍泄漏:揭秘内部工程文档 [译]
好吧,让我们开始吧。谷歌搜索内容库 API 的内部文档不慎泄露。谷歌内部的微服务体系与谷歌云平台所提供的服务相似,其已废弃的文档 AI 仓库的内部文档不小心被公开到了客户端库的代码仓库中。该代码的文档也被外部的自动化文档服务记录下来。
硬核编程
2024/06/07
2560
谷歌搜索秘籍泄漏:揭秘内部工程文档 [译]
「官宣」2019年SEO优化技术权威指南
年轻就该多努力挣钱,心情不好就拿钱撒气,买包买鞋买衣服买冰淇淋吃小龙虾,想干啥干啥!就算被人抛弃,各种糟心的事儿一齐撞上,起码还可以安慰自己,至少我还有钱!
黄伟SEO
2018/12/14
8390
西瓜书习题详解 机器学习能在互联网搜索的哪些环节起什么作用?
看完了西瓜书的第一章,课后习题有这个问题。我先将这个问题定义为:机器学习在搜索引擎上的应用。
叶庭云
2021/12/07
8110
西瓜书习题详解 机器学习能在互联网搜索的哪些环节起什么作用?
【MIT TR 深度】人工智能困境:机器何时才能理解语言
【新智元导读】随着人工智能系统变得越来越高端复杂,我们也愈发难以想象不通过语言,而使用其他方法与计算机沟通。不仅如此,能够简单地与人类交流会让人觉得计算机无比神奇。毕竟,语言是人类理解世界、与世界互动最重要的方法之一,是时候让机器也懂人话了。但是,虽然人工智能领域的科学家进行了各种尝试,但是机器真正理解人话依然是一个难点。本文作者认为,近年来深度学习的发展为解决这一问题带来了希望,但是究竟能不能实现机器与人类在语言上基于理解的沟通,还有待观察。 在韩国首尔的一场格外紧张的围棋比赛的中,史上最佳棋手之一李世石
新智元
2018/03/23
7630
【MIT TR 深度】人工智能困境:机器何时才能理解语言
「知识」2018年搜索引擎优化指南
真正的努力,没有时间感动自己,你只需要用心坚持,永不放弃。厌倦一成不变的生活,总觉得自己可以活得跟现在不一样,可却从没为改变做出任何努力。很多时候,所谓好运并不是你站在那里两手一摊就从天而降,你越努力,它就越容易找到你。 最近有空时,就在看Brian Dean写的有关SEO相关的文章,个人觉得写的非常不错,虽然内容写的仅仅是针对Google搜索引擎的SEO优化内容,但在这里面有着很不错的想法,同样适合百度搜索引擎优化,在这给各位同学分享有关2018年SEO优化需要注意哪些地方。 — — 及时当勉励,岁月不待
黄伟SEO
2018/05/17
1K0
什么是Google算法?认识谷歌搜索引擎的3大算法
想做好Google SEO,就必须认识Google算法,并深入了解Google搜索引擎的运作原理。而Google算法时常更新,及时掌握Google算法更新,可以让网站排名不会因为算法更新而受到大幅波动,符合算法的网站也能更好地获取排名。下面一尘SEO就来阐述下什么是Google算法。
一尘SEO
2020/09/22
3.8K0
什么是Google算法?认识谷歌搜索引擎的3大算法
AI 再造搜索3招:谷歌如何用机器学习和深度学习直接给你答案
来源:trendintech,insidebigdata 等 转载来源:新智元 译者:李静怡, 刘小芹 校对:徐颢 编辑:胡蝶 本文共3162字,建议阅读10分钟 本文从搜索结果、视频搜索和精准营销/SEO这三方面,为你展现被机器学习和深度学习改变的搜索行业。 [导读]搜索是最先一批被人工智能深刻改变的行业,这不仅仅是因为搜索公司(谷歌、百度、微软)跑在了AI 革命的前面。本文从搜索结果、视频搜索和精准营销/SEO这三方面,为你展现被机器学习和深度学习改变的搜索行业。只有拥有 AI 能力的企业才能在不
数据派THU
2018/01/29
9120
人工智能芯片主要技术特征/发展态势 | AI划重点 | 解读行业
懒人阅读:人工智能芯片是人工智能的“大脑”,可以分为终端和云端两个应用方向。目前主流CPU、CPU+GPU、CPU+FPGA、CPU+ASIC架构。人工智能芯片具有两个突出特点:一是算法与芯片的高度契合,面向终端和云端不同需求提升计算能力;二是专门面向细分应用场景的智能芯片,如语音识别芯片、图像识别芯片、视频监控芯片等。
用户7623498
2020/08/04
1.7K0
人工智能芯片主要技术特征/发展态势 | AI划重点 | 解读行业
【综述专栏】排序学习(Learning to rank)综述
在科学研究中,从方法论上来讲,都应“先见森林,再见树木”。当前,人工智能学术研究方兴未艾,技术迅猛发展,可谓万木争荣,日新月异。对于AI从业者来说,在广袤的知识森林中,系统梳理脉络,才能更好地把握趋势。为此,我们精选国内外优秀的综述文章,开辟“综述专栏”,敬请关注。
马上科普尚尚
2021/07/05
4.8K0
链接分析算法之:HillTop算法
Hilltop算法是由Krishna Baharat 在2000年左右研究的,于2001年申请专利,但是有很多人以为Hilltop算法是由谷歌研究的。只不过是Krishna Baharat 后来加入了Google成为了一名核心工程师,然后授权给Google使用的。
黄规速
2022/04/14
6820
链接分析算法之:HillTop算法
推荐系统中的排序学习
“ 本文首先介绍排序学习的三种主要类别,然后详细介绍推荐领域最常用的两种高层排序学习算法框架:BPR和LambdaMART。因为排序学习的算法和实践大都来源于信息检索,一些理论也必须从信息检索的领域说起,所以本文也会涉及一些的信息检索、搜索方面的理论知识,但重点依然会放在推荐领域排序学习的应用思路。”
石晓文
2020/10/09
2.7K0
推荐系统中的排序学习
【重磅】谷歌人工智能帝国内幕大起底
【新智元导读】今天谷歌CEO在年度公开信中写道,我们将进入人工智能为先的世界,但并没有透露多少细节。本文详尽梳理了谷歌所有的——没错,是所有的——人工智能项目及其开发内幕,供你纵览这家公司打造人工智能帝国的布局。 谷歌如何打造人工智能帝国? 这个搜索巨头正在将它的人工智能服务开源,让每个人都可以使用。2007 年 11月,谷歌通过发布安卓手机开源操作系统,为自己在移动市场的支配地位奠定了基础。八年之后,安卓获得了 80%的市场份额,如今谷歌又故伎重演——这次开源的是人工智能。 不久前,谷歌公布了 Tens
新智元
2018/03/22
9590
【重磅】谷歌人工智能帝国内幕大起底
Learning to Rank 小结
一、学习排序(Learning to Rank) LTR(Learning torank)学习排序是一种监督学习(SupervisedLearning)的排序方法。LTR已经被广泛应用到文本挖掘的很多领域,比如IR中排序返回的文档,推荐系统中的候选产品、用户排序,机器翻译中排序候选翻译结果等等。IR领域传统的排序方法一般通过构造相关度函数,然后按照相关度进行排序。影响相关度的因素很多,比如上面提到的tf,idf,dl等。有很多经典的模型来完成这一任务,比如VSM,Boolean model,概率
智能算法
2018/04/02
1.4K0
Learning to Rank 小结
当你在百度搜索关键字的时候,哪个网站会排在最前面?今天给大家科普一下“网站SEO”
什么是SEO呢?SEO是Search Engine Optimization,意为“搜索引擎优化”,一般简称为搜索优化。对于SEO的主要工作就是通过了解各类搜索引擎如何抓取互联网页面,如何进行索引以及如何确定其对某一个特定关键词的搜索结果排名等技术,来对网页进行相关的优化,来提供搜索引擎排名,提高网站访问量。
小灰
2020/10/09
1.2K0
当你在百度搜索关键字的时候,哪个网站会排在最前面?今天给大家科普一下“网站SEO”
推荐阅读
相关推荐
Google 全面转向人工智能,机器学习高管接管搜索引擎
更多 >
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档