前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >2017年AI技术盘点:关键进展与趋势

2017年AI技术盘点:关键进展与趋势

作者头像
企鹅号小编
发布2018-02-08 11:10:21
5630
发布2018-02-08 11:10:21
举报
文章被收录于专栏:企鹅号快讯

人工智能最近三年发展如火如荼,学术界、工业界、投资界各方一起发力,硬件、算法与数据共同发展,不仅仅是大型互联网公司,包括大量创业公司以及传统行业的公司都开始涉足人工智能。

2017年人工智能行业延续了2016年蓬勃发展的势头,那么在过去的一年里AI行业从技术发展角度有哪些重要进展?未来又有哪些发展趋势?本文从大家比较关注的若干领域作为代表,来归纳AI领域一些方向的重要技术进展。

从AlphaGo Zero到Alpha Zero:迈向通用人工智能的关键一步

DeepMind携深度增强学习利器总是能够给人带来震撼性的技术创新,2016年横空出世的AlphaGo彻底粉碎了普遍存在的“围棋领域机器无法战败人类最强手”的执念,但是毕竟李世石还是赢了一局,不少人对于人类翻盘大逆转还是抱有希望,紧接着Master通过60连胜诸多顶尖围棋高手彻底浇灭了这种期待。

2017年AlphaGo Zero作为AlphaGo二代做了进一步的技术升级,把AlphaGo一代虐得体无完肤,这时候人类已经没有资格上场对局了。2017年底AlphaGo的棋类游戏通用版本Alpha Zero问世,不仅仅围棋,对于国际象棋、日本将棋等其他棋类游戏,Alpha Zero也以压倒性优势战胜包括AlphaGo Zero在内的目前最强的AI程序。

图1 AlphaGo Zero的自我对弈及训练过程

AlphaGo Zero从技术手段上和AlphaGo相比并未有本质上的改进,主体仍然是MCST蒙特卡洛搜索树加神经网络的结构以及深度增强学习训练方法,但是技术实现上简单优雅很多(参考图1)。主要的改动包含两处:一处是将AlphaGo的两个预测网络(策略网络和价值网络)合并成一个网络,但是同时产生两类所需的输出;第二处是网络结构从CNN结构升级为ResNet。

转自:人工智能头条

本文来自企鹅号 - 机器学习研究会媒体

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文来自企鹅号 - 机器学习研究会媒体

如有侵权,请联系 cloudcommunity@tencent.com 删除。

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
人工智能与机器学习
提供全球领先的人脸识别、文字识别、图像识别、语音技术、NLP、人工智能服务平台等多项人工智能技术,共享 AI 领域应用场景和解决方案。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档