前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >回顾与展望丨数据科学 机器学习:2017年的主要发展和2018年的关键趋势

回顾与展望丨数据科学 机器学习:2017年的主要发展和2018年的关键趋势

作者头像
CDA数据分析师
发布2018-02-05 17:11:33
7210
发布2018-02-05 17:11:33
举报
文章被收录于专栏:CDA数据分析师

KDnuggets邀请了数据科学相关领域杰出的代表人物对2017年的主要发展和2018年的趋势进行了总结和预测。主要内容涉及到 AI 、深度学习、机器学习、安全、AlphaGo Zero等等。

Kirk D. Borne

BoozAllen的首席数据科学家,天体物理学博士。数据科学和大数据领域的影响者。

回顾 2017

在2017年,技术成熟度曲线(Technology Hype Cycle)的中心位置由原来的大数据渐渐被 AI 取代。媒体和从业者对 AI 的关注在正面新闻,比如越来越强大的机器学习算法和 AI 在汽车、医疗影像、金融服务等行业的应用;以及负面新闻,关于机器将抢走人类工作的威胁。

我们还见证了数据方面创新的发展,包括更多地使用API,即服务提供、数据科学平台、深度学习,以及云机器学习服务。大数据、机器学习和 AI 的专业应用,包括机器智能、规范性分析、行为分析和物联网。

展望 2018

在2018年,我们还需要关注 AI 的其他方面。比如 AI 的价值,衡量它的投资回报率,让其可以实际操作。

主要的发展领域与2017年没有太大差别,主要包括过程自动化、机器智能、客户服务。我们还将见证物联网的日益成熟,包括更强大的安全特性、模块化平台、传感器数据流的AP等。在2018年,更多的从业人员将面对挑战,向持怀疑态度的公众传达 AI 的好处。

Tom Davenport

巴布森学院信息技术与管理专业的杰出教授,国际分析研究所联合创始人,麻省理工学院数字经济学的研究员,德勤分析的高级顾问。

回顾 2017

企业 AI 成为主流,许多大型的知名公司正在进行 AI 或机器学习。一些公司拥有超过50个用到各种技术的项目。大型供应商开始转为开源、自己动手的项目类型。当然,这意味着公司必须提高其数据科学技能。

机器学习应用到数据集成,数据分析和数据管理中之前存在的挑战现在能通过机器学习解决。通过劳动密集型方法对数据进行集成和管理正在被替换,至少是通过不同数据库中相似数据元素的“概率匹配”来实现的。这能够减少整合数据的时间。

开放源代码的企业接受开源,传统的银行、保险和医疗等行业,正在积极地接受开源分析、 AI 和数据管理软件。

展望 2018

我们已经进入了“后算法”时代。之前分析师和数据科学家需要一定的知识来确定使用哪种算法。但是,分析和机器学习过程的自动化能够思考100种以上的不同算法。重要的是模型的效果和整体表现。

独立的 AI 创业公司的吸引力开始减弱。在风险投资基金的推动下,过去几年中成立了数百家 AI 创业公司。当中大多数解决的是较小的问题。然而,即使能够有效地运作,能够与现有流程和系统集成是其主要挑战。因此,成熟的企业更倾向于开发自己的 AI “微服务”,这些服务相对更容易集成,或者从那些将 AI 嵌入到交易系统的供应商购买。

Jill Dyche

SAS Best Practice的副总裁,畅销商业书籍的作者。

回顾 2017

如今几乎每个人都会应用到 AI 和机器学习。2017年,许多供应商都在开发自己的 AI 产品。

展望 2018

在2018年,商业对话和案例中,AI/ML方面会显著增长。这是因为企业有许多业务问题需要解决,管理者不关心神经网络是否要处理稀疏的数据;对自然语言处理中的词汇推理挑战。相反,他们想要加速供应链,知道客户下一步想做什么,然后简单地告诉电脑他们想要什么。这是一种规范性分析,那些能够以简便的方式解决该问题的供应商能够笑到最后。

Carla Gentry

Analytical Solution的数据科学家

回顾 2017

2017年,每个人都开始讨论机器学习、AI 和预测分析。但实际上许多这些公司,供应商只是热衷于这些热词,而并没有他们宣称的相关背景。在这些领域的经验需要时间和才干,而不仅仅是盲目的呼吁行动。总之,经验才是最重要的!

展望 2018

2018年,我们需要关注数据科学和预测分析的领导者。不是因为这很热门,而是因为这能给你的企业带来巨大的变化。

对招聘进行预测可以节省数百万人的成本;AI 和机器学习可以在几秒钟内完成你需要几天去做的事情。技术可以把我们提升到新的高度,但作为数据科学家,需要通过法律和社会的基本道德。

Bob E. Hayes

研究人员,作家,Business Over Broadway的出版商,组织心理学博士。

回顾 2017

数据科学和机器学习越来越多地应用于各种行业和领域。在2017年,我们目睹了 AI 的巨大进步。虽然之前深度学习模型需要大量的数据教算法,但是神经网络和强化学习表明,创建高性能的算法时并不需要数据集。DeepMind采用了这些技术,开发了Alpha Go Zero,这更优于之前版本的算法。

展望 2018

随着 AI 在刑事司法、金融、教育等领域的持续发展,我们将需要建立算法标准,用来评估其不准确性和偏差。包括建立 AI 的使用规则(例如,避免决策中的暗箱操作),并理解深度学习算法如何做出决定。

数据中心的安全漏洞将继续攀升,即使互联网时代出现的公司(例如imgur, Uber)。因此,我们将看到安全措施方面的改革的,将增加区块链的可见性作为一种可行的方式,用来改善公司如何获得其选区的数据。

Gregory Piatetsky-Shapiro

KDnuggets总裁,数据科学家,KDD和SIGKDD会议(知识发现和数据挖掘专业组织)的联合创始人。

回顾 2017

· AlphaGo Zero可能是2017年 AI 最重要的研究进展

· 数据科学方面自动化的增长,提供了更多提供自动化工具的机器学习平台。

· AI 的舆论热度和期望的增长甚至比 AI 和深度学习的发展还快。

展望 2018

· GDPR(欧洲通用数据保护条例)将在2018年5月25日生效,这将对数据科学产生重大影响,其中包括解释的权利(你的深度学习方法是否可以解释为什么某人被拒绝贷款等),以及防止偏见和歧视。

· 谷歌 DeepMind 团队将跟进AlphaGo Zero的惊人结果,并实现另一个强大的性能。在几年前,许多人认为这是计算机无法做到的。

(注: DeepMind 取得的另一个突破进展发生在2017年12月,AlphaZero在4个小时内就能熟练掌握国际象棋,同样的自我博弈学习程序可以在国际象棋、围棋和日本将棋方面达到超人般的表现。)

· 我们将会看到更多的自动驾驶汽车的发展,包括首次出现的问题正在被解决(比如拉斯维加斯的无人驾驶飞机,一开始不知道如何让道,但之后能够让道)。

· AI 的泡沫将继续存在,但我们将看到重组和整合的迹象。

Paul Gearan,Heather Allen,Karl Rexer

Rexer Analytics的负责人,Rexer Analytics是一家数据挖掘和高级分析咨询公司。

回顾 2017

对于没有研究或分析背景的人群,使用商业智能软件仍然面临许多障碍。当然出现了Tableau、IBM Watson、Microsoft Power BI等软件。然而,根据Rexer Analytics在2017年收集的数据,只有近一半的受访者表示,除了数据科学团队,他们公司其他员工也有使用相关自助工具。工具使用时,常见的问题有难以理解分析过程以及对分析结果的误解。

展望 2018

对于2018年,实现推广数据科学工具的目标是扩大分析的使用范围,从而得出有效的结果,这是至关重要的。通常情况下,向非数据分析方面的员工和管理人员提供工具,让他们对自己的假设进行探索和可视化是很重要的。但同样重要的是,团队要与数据科学专业人员一起开发模型并解读得出的见解,这些专业人员经过培训,能够掌握特定分析技术的应用。

原文链接:

https://www.kdnuggets.com/2017/12/data-science-machine-learning-main-developments-trends.html

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-01-16,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 CDA数据分析师 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
NLP 服务
NLP 服务(Natural Language Process,NLP)深度整合了腾讯内部的 NLP 技术,提供多项智能文本处理和文本生成能力,包括词法分析、相似词召回、词相似度、句子相似度、文本润色、句子纠错、文本补全、句子生成等。满足各行业的文本智能需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档