今天介绍快速排序,这也是在实际中最常用的一种排序算法,速度快,效率高。就像名字一样,快速排序是最优秀的一种排序算法。
思想
快速排序采用的思想是分治思想。
快速排序是找出一个元素(理论上可以随便找一个)作为基准(pivot),然后对数组进行分区操作,使基准左边元素的值都不大于基准值,基准右边的 元素值 都不小于基准值,如此作为基准的元素调整到排序后的正确位置。递归快速排序,将其他n-1个元素也调整到排序后的正确位置。最后每个元素都是在排序后的正 确位置,排序完成。所以快速排序算法的核心算法是分区操作,即如何调整基准的位置以及调整返回基准的最终位置以便分治递归。
举例说明一下吧,这个可能不是太好理解。假设要排序的序列为
2 2 4 9 3 6 7 1 5 首先用2当作基准,使用i j两个指针分别从两边进行扫描,把比2小的元素和比2大的元素分开。首先比较2和5,5比2大,j左移
2 2 4 9 3 6 7 1 5 比较2和1,1小于2,所以把1放在2的位置
2 1 4 9 3 6 7 1 5 比较2和4,4大于2,因此将4移动到后面
2 1 4 9 3 6 7 4 5 比较2和7,2和6,2和3,2和9,全部大于2,满足条件,因此不变
经过第一轮的快速排序,元素变为下面的样子
[1] 2 [9 3 6 7 4 5]
之后,在把2左边的元素进行快排,由于只有一个元素,因此快排结束。右边进行快排,递归进行,最终生成最后的结果。
代码
int quicksort(vector<int> &v, int left, int right){
if(left < right){
int key = v[left];
int low = left;
int high = right;
while(low < high){
while(low < high && v[high] > key){
high--;
}
v[low] = v[high];
while(low < high && v[low] < key){
low++;
}
v[high] = v[low]
}
v[low] = key;
quicksort(v,left,low-1);
quicksort(v,low+1,right);
}
}
分析
快速排序的时间主要耗费在划分操作上,对长度为k的区间进行划分,共需k-1次关键字的比较。
最坏情况是每次划分选取的基准都是当前无序区中关键字最小(或最大)的记录,划分的结果是基准左边的子区间为空(或右边的子区间为空),而划分所得的另一个非空的子区间中记录数目,仅仅比划分前的无序区中记录个数减少一个。时间复杂度为O(n*n)
在最好情况下,每次划分所取的基准都是当前无序区的"中值"记录,划分的结果是基准的左、右两个无序子区间的长度大致相等。总的关键字比较次数:O(nlgn)
尽管快速排序的最坏时间为O(n2),但就平均性能而言,它是基于关键字比较的内部排序算法中速度最快者,快速排序亦因此而得名。它的平均时间复杂度为O(nlgn)。
一趟快速排序的算法是:
1)、设置两个变量I、J,排序开始的时候I:=1,J:=N;
2)以第一个数组元素作为关键数据,赋值给X,即X:=A[1];
3)、从J开始向前搜索,即由后开始向前搜索(J:=J-1),找到第一个小于X的值,两者交换;
4)、从I开始向后搜索,即由前开始向后搜索(I:=I+1),找到第一个大于X的值,两者交换;
5)、重复第3、4步,直到I=J;
例如:待排序的数组A的值分别是:(初始关键数据X:=49)
A[1] A[2] A[3] A[4] A[5] A[6] A[7]:
49 38 65 97 76 13 27
进行第一次交换后: 27 38 65 97 76 13 49
( 按照算法的第三步从后面开始找
进行第二次交换后: 27 38 49 97 76 13 65
( 按照算法的第四步从前面开始找>X的值,65>49,两者交换,此时I:=3 )
进行第三次交换后: 27 38 13 97 76 49 65
( 按照算法的第五步将又一次执行算法的第三步从后开始找
进行第四次交换后: 27 38 13 49 76 97 65
( 按照算法的第四步从前面开始找大于X的值,97>49,两者交换,此时J:=4 )
此时再执行第三不的时候就发现I=J,从而结束一躺快速排序,那么经过一躺快速排序之后的结果是:27 38 13 49 76 97 65,即所以大于49的数全部在49的后面,所以小于49的数全部在49的前面。
快速排序法”使用的是递归原理,下面我结合一个例子来说明“快速排序法”的原理。首先给出一个数组 {53,12,98,63,18,72,80,46, 32,21},先找到第一个数--53,把它作为中间值,也就是说,要把53放在一个位置,使得它左边的值比它小,右边的值比它大。{21,12,32, 46,18,53,80,72,63,98},这样一个数组的排序就变成了两个小数组的排序--53左边的数组和53右边的数组,而这两个数组继续用同样 的方式继续下去,一直到顺序完全正确。 我这样讲你们是不是很胡涂,不要紧,我下面给出实现的两个函数:
/*
n就是需要排序的数组,left和right是你需要排序的左界和右界,
如果要排序上面那个数组,那么left和right分别是0和9
*/
void quicksort(int n[], int left,int right)
{
int dp;
if (left<right) {
/*
这就是下面要讲到的函数,按照上面所说的,就是把所有小于53的数放
到它的左边,大的放在右边,然后返回53在整理过的数组中的位置。
*/
dp=partition(n,left,right);
quicksort(n,left,dp-1);
quicksort(n,dp+1,right); //这两个就是递归调用,分别整理53左边的数组和右边的数组
}
}
我们上面提到先定位第一个数,然后整理这个数组,把比这个数小的放到它的左边,大的放右边,然后返回这中间值的位置,下面这函数就是做这个的。
int partition(int n[],int left,int right)
{
int lo,hi,pivot,t;
pivot=n[left];
lo=left-1;
hi=right+1;
while(lo+1!=hi) {
if(n[lo+1]<=pivot)
lo++;
else if(n[hi-1]>pivot)
hi--;
else {
t=n[lo+1];
n[++lo]=n[hi-1];
n[--hi]=t;
}
}
n[left]=n[lo];
n[lo]=pivot;
return lo;
}
这段程序并不难,应该很好看懂,我把过程大致讲一下,首先你的脑子里先浮现一个数组和三个指针,第一个指针称为p指针,在整个过程结束之前它牢牢的指向第一个数,第二个指针和第三个指针分别为lo指针和hi指针,分别指向最左边的值和最右边的值。lo指针和hi指针从两边同时向中间逼近,在逼近的过程中不停的与p指针的值比较,如果lo指针的值比p指针的值小,lo++,还小还++,再小再++,直到碰到一个大于p指针的值,这时视线转移到hi指针,如果 hi指针的值比p指针的值大,hi--,还大还--,再大再--,直到碰到一个小于p指针的值。这时就把lo指针的值和hi指针的值做一个调换。持续这过程直到两个指针碰面,这时把p指针的值和碰面的值做一个调换,然后返回p指针新的位置。
#include<iostream>
using namespace std;
int a[200001],n;
void swap(int &a,int &b)
{
int tmp = a;
a = b;
b = tmp;
}
int partition(int p,int r)
{
int rnd = rand()%(r-p+1)+p;
swap(a[rnd],a[r]);
int pvt = r, i = p-1;
for(int j = i+1;j<r;j++)
if(a[j]<a[pvt])
swap(a[j],a[++i]);
swap(a[++i],a[pvt]);
return i;
}
void qsort(int p,int r)
{
if(p<r){
int q = partition(p,r);
qsort(p,q-1);
qsort(q+1,r);
}
}
int main()
{
cin>>n;
for(int i=0;i<n;i++)
cin>>a[i];
qsort(0,n-1);
for( i=0;i<n;i++)
cout<<a[i]<<" ";
return 0;
}