前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >泛函编程(21)-泛函数据类型-Monoid

泛函编程(21)-泛函数据类型-Monoid

作者头像
用户1150956
发布2018-01-04 17:54:22
6260
发布2018-01-04 17:54:22
举报
文章被收录于专栏:函数式编程语言及工具

    Monoid是数学范畴理论(category theory)中的一个特殊范畴(category)。不过我并没有打算花时间从范畴理论的角度去介绍Monoid,而是希望从一个程序员的角度去分析Monoid以及它在泛函编程里的作用。从这个思路出发我们很自然得出Monoid就是一种数据类型,或者是一种在泛函编程过程中经常会遇到的数据类型:当我们针对List或者loop进行一个数值的积累操作时我们就会使用到Monoid。实际上Monoid就是List[A] => A的抽象模型。好了,我们就不要越描越黑了吧,还是看看Monoid的定义吧:

Monoid由以下条件组成:

1、一个抽象类型A

2、一个二元结合性函数(binary associative function),对传入的两个A类参数进行操作后产生一个A类型结果

3、一个恒等值(identity)

由于Monoid是一个数学类型,它的二元操作函数必须遵循一些定律:

1、结合性(associativity):op(a,op(b,c)) = op(op(a,b),c):这个定律是函数组合(function composition)不可缺的条件

2、二元函数参数中如果有一个是恒等值时操作结果为另一个参数:op(identity,v) = v

我们可以用编程语言来描述Monoid:

代码语言:javascript
复制
1   trait Monoid[A] {                //被封装的类型A
2       def op(a1: A, a2: A): A   //二元函数
3       val zero: A               //恒等值identity
4   }

我们用scala的特质(trait)描述了Monoid。它就是一个抽象的数据类型。

既然Monoid trait是个抽象类型,那么我们可以试着创建几个基础类型的Monoid实例:

代码语言:javascript
复制
 1   val stringConcatMonoid = new Monoid[String] {
 2        def op(s1: String, s2: String) = s1 + s2
 3       val zero = ""   // op(zero,s2) = "" + s2 = s2 恒等值定律
 4   }                                               //> stringConcatMonoid  : ch10.ex1.Monoid[String] = ch10.ex1$$anonfun$main$1$$an
 5                                                   //| on$1@3581c5f3
 6   val intAdditionMonoid = new Monoid[Int] {
 7       def op(i1: Int, i2: Int) = i1 + i2
 8        val zero = 0
 9   }                                               //> intAdditionMonoid  : ch10.ex1.Monoid[Int] = ch10.ex1$$anonfun$main$1$$anon$4
10                                                   //| @340f438e
11   val intMultiplicationMonoid = new  Monoid[Int] {
12       def op(i1: Int, i2: Int) = i1 * i2
13       val zero = 1
14   }                                               //> intMultiplicationMonoid  : ch10.ex1.Monoid[Int] = ch10.ex1$$anonfun$main$1$$
15                                                   //| anon$5@30c7da1e

可以看出,这几个Monoid实例都符合Monoid定律。那我们可以先试着用用。上面提到Monoid最适合一串值的累加操作List[A] => A,我们可以对List[A]进行操作示范:

代码语言:javascript
复制
1  def reduce[A](as: List[A])(m: Monoid[A]): A = {
2     as match {
3         case Nil => m.zero
4         case h::t => m.op(h, reduce(t)(m))
5     }
6   }                                               //> reduce: [A](as: List[A])(m: ch10.ex1.Monoid[A])A

Monoid m是个抽象类型,m.zero和m.op()的具体意义要看Monoid的实例了:

代码语言:javascript
复制
1   reduce(List(1,2,3))(intAdditionMonoid)          //> res3: Int = 6
2   reduce(List("this is ","the string", " monoid"))(stringConcatMonoid)
3                                                   //> res4: String = this is the string monoid

对List[A]的具体累加处理是按照intAdditionMonoid和stringConcatMonoid的二元函数功能进行的。看来Monoid特别适用于List类型的循环操作。可以把reduce函数的参数拓展开来看看:

代码语言:javascript
复制
1   reduce[A](as: List[A])(zero: A)(op: (A,A) => A) : A

这个类型款式跟折叠算法的类型款式非常相似:

代码语言:javascript
复制
1   def foldRight[A,B](as: List[A])(z: B)(f: (A,B) => B): B
2   如果类型B=类型A
3   def foldRight[A](as: List[A])(z: A)(f: (A,A) => A): A

实际上我们可以直接用上面的Monoid实例运算折叠算法:

代码语言:javascript
复制
1   List(1,2,3).foldRight(intAdditionMonoid.zero)(intAdditionMonoid.op)
2                                                   //> res3: Int = 6
3   List("this is ","the string", " monoid").foldLeft(stringConcatMonoid.zero)(stringConcatMonoid.op)
4                                                   //> res4: String = this is the string monoid

左右折叠算法都可以。Monoid的结合性定律(associativity law)可以使List元素运算左右路径相等。

下面我们再试着增加几个Monoid实例:

代码语言:javascript
复制
 1   def optionMonoid[A] = new Monoid[Option[A]] {
 2       def op(o1: Option[A], o2: Option[A]): Option[A] = o1 orElse o2
 3       val zero = None  // op(zero, o1)= None orElse o2 = o2
 4   }                                               //> optionMonoid: [A]=> ch10.ex1.Monoid[Option[A]]{val zero: None.type}
 5   def listConcatMonoid[A] = new Monoid[List[A]] {
 6       def op(l1: List[A], l2: List[A]) = l1 ++ l2
 7       val zero = Nil
 8   }                                               //> listConcatMonoid: [A]=> ch10.ex1.Monoid[List[A]]{val zero: scala.collection.
 9                                                   //| immutable.Nil.type}
10     val booleanOrMonoid = new Monoid[Boolean] {
11         def op(b1: Boolean, b2: Boolean) = b1 || b2
12         val zero = false
13     }                                         //> booleanOrMonoid  : ch10.ex1.Monoid[Boolean] = ch10.ex1$$anonfun$main$1$$anon
14                                                   //| $6@5b464ce8
15     val booleanAndMonoid = new Monoid[Boolean] {
16         def op(b1: Boolean, b2: Boolean) = b1 && b2
17         val zero = true
18     }                                         //> booleanAndMonoid  : ch10.ex1.Monoid[Boolean] = ch10.ex1$$anonfun$main$1$$an
19                                                   //| on$7@57829d67
20     def endoComposeMonoid[A] = new Monoid[A => A] {
21         def op(f: A => A, g: A => A) = f compose g
22         val zero = (a: A) => a    // op(zero, g: A => A) = zero compose g = g
23     }                                         //> endoComposeMonoid: [A]=> ch10.ex1.Monoid[A => A]
24     def endoAndThenMonoid[A] = new Monoid[A => A] {
25         def op(f: A => A, g: A => A) = f andThen g
26         val zero = (a: A) => a   // op(zero, g: A => A) = zero andThen g = g
27     }                                         //> endoAndThenMonoid: [A]=> ch10.ex1.Monoid[A => A]
28     //计算m的镜像Monoid 
29     def dual[A](m: Monoid[A]) = new Monoid[A] {  
30         def op(x: A, y: A) = m.op(y,x)    //镜像op即时二元参数位置互换
31         val zero = m.zero
32     }                                         //> dual: [A](m: ch10.ex1.Monoid[A])ch10.ex1.Monoid[A]
33     def firstOfDualOptionMonoid[A] = optionMonoid[A]
34                                                   //> firstOfDualOptionMonoid: [A]=> ch10.ex1.Monoid[Option[A]]{val zero: None.ty
35                                                   //| pe}
36     def secondOfDualOptionMonoid[A] = dual(firstOfDualOptionMonoid[A])
37                                                   //> secondOfDualOptionMonoid: [A]=> ch10.ex1.Monoid[Option[A]]

以上几个增加的Monoid实例中endoComposeMonoid和endoAndThenMonoid可能比较陌生。它们是针对函数组合的Monoid。

还是回到对List[A]的累加操作。下面这个函数用Monoid对List[A]元素A进行累加操作:

代码语言:javascript
复制
1   def concatenate[A](l: List[A], m: Monoid[A]): A = {
2       l.foldRight(m.zero){(a,b) => m.op(a,b)}
3   }                                               //> concatenate: [A](l: List[A], m: ch10.ex1.Monoid[A])A
4   concatenate[Int](List(1,2,3),intAdditionMonoid) //> res0: Int = 6

那么如果没有List[A]元素A类型Monoid实例怎么办?我们可以加一个函数:

代码语言:javascript
复制
1 def foldMap[A,B](as: List[A])(m: Monoid[B])(f: A => B): B

如果我们有一个函数可以把A类转成B类 A => B,那我们就可以使用Monoid[B]了:

代码语言:javascript
复制
1   def foldMap[A,B](as: List[A])(m: Monoid[B])(f: A => B): B = {
2     as.foldRight(m.zero)((a,b) => m.op(f(a),b))
3   }

说明一下:foldRight的类型款式:foldRight[A,B](as: List[A])(z: B)(g: (A,B) => B): B。其中(A,B) => B >>> (f(A),B) => B >>> (B,B) => B 就可以使用 Monoid[B].op(B,B)=B了。我们也可以用foldLeft来实现foldMap。实际上我们同样可以用foldMap来实现foldRight和foldLeft: 

代码语言:javascript
复制
1 def foldRight[A,B](la: List[A])(z: B)(f: (A,B) => B): B
2 def foldLeft[A,B](la: List[A])(z: B)(f: (A,B) => B): B
3 def foldMap[A,B](as: List[A])(m: Monoid[B])(f: A => B): B

foldRight和foldLeft的f函数是(A,B) => B,如果用curry表达:A => (B => B),如果能把 A => ? 转成 B => B,那么我们就可以使用endoComposeMonoid[B].op(f: B => B, g: B => B): B。

代码语言:javascript
复制
1   def foldRight[A,B](as: List[A])(z: B)(f: (A,B) => B): B = {
2       foldMap(as)(endoComposeMonoid[B])(a => b => f(a,b))(z)
3   }

说明:foldMap需要f: A => B, foldRight有 (A,B) => B >>> A => B => B >>> f(a)(b) => b >>> f(a,b)(z) >>> f(b)(b)

foldLeft是从左边开始折叠,只需要采用endoComposeMonoid的镜像Monoid把op参数位置调换就行了:

代码语言:javascript
复制
1   def foldLeft[A,B](as: List[A])(z: B)(f: (A,B) => B): B = {
2     foldMap(as)(dual(endoComposeMonoid[B]))(a => b => f(a,b))(z)
3   }

在这节我们简单的介绍了Monoid及它的一些初级类型的实例使用方式。我们也把Monoid代数模型的一面:函数的互通转换及组合稍微示范了一下。在下一节我们将会把Monoid在实际编程中的应用以及Monoid的深度抽象做些讨论。

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2015-04-20 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档