前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >CNN中各层图像大小的计算

CNN中各层图像大小的计算

作者头像
GavinZhou
发布2018-01-02 15:37:40
2.5K0
发布2018-01-02 15:37:40
举报
文章被收录于专栏:机器学习实践二三事

CNN刚刚入门,一直不是很明白通过卷积或者pooling之后图像的大小是多少,看了几天之后终于搞清楚了,在这里就结合keras来说说各层图像大小是怎么计算的,给刚入门的一点启发吧!

keras中的convolution和pooling

keras我们以0.2的版本来介绍,0.1对的版本有不一样的地方。0.1的版本的border_mode可以有三种:valid,same,full,0.2版本中的只有两种少了full。

0.2版本的卷积需要指明input_shape但是不需要指明feature map的数量,0.1不需要指明input_shape但是需要指明feature map的数量。 下面具体说说几个重要参数的具体意思:

CONVOLUTION

代码语言:javascript
复制
keras.layers.convolutional.Convolution2D(nb_filter, nb_row, nb_col, init='glorot_uniform', activation='linear', weights=None, border_mode='valid', subsample=(1, 1), dim_ordering='th', W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None)

nb_filter:filter的个数 nb_row,nb_col:filter的大小(行和列) init:初始化方法 activation:激活函数 border_mode:valid 或者same,这个对下一层的运算产生影响 W_regulizer: WeightRegularizer,调整主权值矩阵的,通常使用L2 regulizer

POOLING 最常用的就是maxpooling,比如pool_size=(2, 2)就是说2*2=4个像素取值大的那个作为pooling之后的值,看下图:

代码语言:javascript
复制
keras.layers.convolutional.MaxPooling2D(pool_size=(2, 2), strides=None, border_mode='valid', dim_ordering='th')

pool_size:pooling的大小 stride:pooling的stride大小 border_mode: ‘valid’ or ‘same’ Note: ‘same’ will only work with TensorFlow for the time being dim_ordering: ‘th’ or ‘tf’. In ‘th’ mode, the channels dimension (the depth) is at index 1, in ‘tf’ mode is it at index 3

代码实例

代码语言:javascript
复制
weight_decay = 0.0001

# 使用sequentia模型
chars_model = Sequential()

# 第一层卷积,filter大小4*4,数量32个,原始图像大小36*20
chars_model.add(Convolution2D(32, 4, 4, input_shape=(1, 36, 20), border_mode='valid', activation='relu', W_regularizer=l2(weight_decay)))

# 第二层卷积,filter大小4*4,数量32个,图像大小(36-4+1)*(20-4-1)
chars_model.add(Convolution2D(32, 4, 4, input_shape=(1, 33, 17), border_mode='valid', activation='relu', W_regularizer=l2(weight_decay)))

# maxpooling,大小(2,2),输入大小是30*14,stride默认是None,输出大小是15*7
chars_model.add(MaxPooling2D(pool_size=(2, 2)))

# dropout防止过拟合
chars_model.add(Dropout(0.3))


# 第三层卷积,filter大小4*4,数量64个,图像大小15*7
chars_model.add(Convolution2D(64, 4, 4, input_shape=(1, 15, 7), border_mode='valid', activation='relu', W_regularizer=l2(weight_decay)))

# 第四层卷积,filter大小4*4,数量64个,图像大小12*4,输出是10*2
chars_model.add(Convolution2D(64, 3, 3, input_shape=(1, 12, 4), border_mode='valid', activation='relu', W_regularizer=l2(weight_decay)))

# maxpooling,大小(2,2),输入大小是12*4,stride默认是None,输出大小是5*1
chars_model.add(MaxPooling2D(pool_size=(2, 2)))

# dropout防止过拟合
chars_model.add(Dropout(0.3))


# flatten
chars_model.add(Flatten())

# 全连接,输入是上层的64个feature map,大小是5*1,输出有512个
chars_model.add(Dense(input_dim=64 * 5 * 1, output_dim=512, activation='relu'))
chars_model.add(Dropout(0.6))


# 全连接,输入是上层的输出512,softmax回归分类,总共26个类别
chars_model.add(Dense(input_dim=512, output_dim=26, activation='softmax'))

# 随机梯度下降的参数,使用momentum+decay
sgd = SGD(l2=0.0, lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True)

# 损失函数定义为对数损失(categorical_crossentropy)
chars_model.compile(loss='categorical_crossentropy', optimizer=sgd, class_mode="categorical")

# monitor定义为val_loss,输出相应的信息,只保存最好的val_loss(val_loss最小的那个),save_best_only
check_pointer = ModelCheckpoint(save_chars_model_path, monitor='val_loss', verbose=1, save_best_only=True)

# batch为128,epoch为4000个,validation_split=0.1
chars_model.fit(data_train, label_train, batch_size=128, nb_epoch=4000, verbose=1, show_accuracy=True, validation_split=0.1, callbacks=[check_pointer])

# 使用训练好的模型来评价test集合
score = chars_model.evaluate(data_test, label_test, show_accuracy=True, verbose=0)

注释已经写的很清楚了,想必结合keras应该可以很容易看懂,就不多说了,如果有问题欢迎提出!

mnist网络的图解

结合下经典的mnist网络,说下各层算完之后的大小

我们可以看到: 输入:32*32 conv1:6个5*5的filter,输出6*28*28 pool1:2*2,输出6*14*14 conv2:16个5*5的filter,输出16*6*10*10 pool2:2*2,输出16*6*5*5 fc1:输入16×5*5,输出120 fc2:输入120,输出84 output:输入84,输出10类

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
原始发表:2016-01-29 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • keras中的convolution和pooling
  • 代码实例
  • mnist网络的图解
相关产品与服务
图像处理
图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档