前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Python之数据规整化:清理、转换、合并、重塑

Python之数据规整化:清理、转换、合并、重塑

作者头像
王小雷
发布2018-01-02 14:22:39
3.1K0
发布2018-01-02 14:22:39
举报
文章被收录于专栏:王小雷

Python之数据规整化:清理、转换、合并、重塑

1. 合并数据集
代码语言:javascript
复制
pandas.merge可根据一个或者多个不同DataFrame中的行连接起来。
pandas.concat可以沿着一条轴将多个对象堆叠到一起。
实例方法combine_first可以将重复数据编接在一起,用一个对象中的值填充另一个对象中的缺失值。
2. 数据风格的DataFrame合并操作
代码语言:javascript
复制
2.1 数据集的合并(merge)或连接(jion)运算时通过一个或多个键将行链接起来的。如果没有指定,merge就会将重叠列的列名当做键,最好显示指定一下。
pd.merge(df1,df2,on='key')
2.2 默认情况下,merge做的是"inner"连接,结果中的键是交集。其他方式有“left”、“right”、“outer”。外连接求取的是键的并集,组合了左连接和右连接。
2.3 都对的的连接是行的笛卡尔积。
2.4 merge的suffixes选项,用于指定附加到左右两个DataFrame对象的重叠列名上的字符串。
3. 索引上的合并
代码语言:javascript
复制
DataFrame有merge和join索引合并。
4. 重塑和轴向旋转
代码语言:javascript
复制
有许多用于重新排列表格型数据的基础运算。这些函数也称作重塑(reshape)或轴向旋转(pivot)运算。
4.1 重塑层次化索引
层次化索引为DataFrame数据的重排任务提供了良好的一致性方式。主要两种功能:
    stack:将数据的列“旋转”为行。
    unstack:将数据的行“旋转”为列。
5. 数据转换
代码语言:javascript
复制
5.1 利用函数或映射进行数据转换
Series的map方法可以接受一个函数或含有映射关系的字典型对象。
5.2 替换值
replace可以由一个带替换值组成的列表以及一个替换值
data.replace([-999,-1000],np.nan)
5.3 重命名轴索引
轴标签也可通函数或映射进行转换,从而得到一个新对象轴还可以被就地修改,而无需新建一个数据结构。
5.4 离散化和面元划分
为了便于分析,连续数据常常被分散化或拆分成“面元”(bin)。
pandas的cut函数
5.5 检测和过滤异常值
异常值的过滤或变换运算很大程度上其实就是数组的运算。
6. 字符串操作
代码语言:javascript
复制
6.1 字符串对象方法
split以逗号分割的字符串可以拆分成数段。
字符串“::”的jion方法以冒号分隔符的形式连接起来。
6.2 正则表达式
描述一个或多个空白符的regex是\s+
创建可重用的regex对象:
regex = re.complie('\s+')
regex.split(text)
6.3 pandas中矢量化的字符串函数
实现矢量化的元素获取操作:要么使用str.get,要么使用str属性上使用索引。
本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • Python之数据规整化:清理、转换、合并、重塑
    • 1. 合并数据集
      • 2. 数据风格的DataFrame合并操作
        • 3. 索引上的合并
          • 4. 重塑和轴向旋转
            • 5. 数据转换
              • 6. 字符串操作
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档