栈是一种特殊的线性表,仅允许在表的一端进行插入和删除运算。这一端被称为栈顶(top),相对地,把另一端称为栈底(bottom)。向一个栈插入新元素又称作进栈、入栈或压栈(push),它是把新元素放到栈顶元素的上面,使之成为新的栈顶元素;从一个栈删除元素又称作出栈或退栈(pop),它是把栈顶元素删除掉,使其相邻的元素成为新的栈顶元素。所以栈具有“后入先出”的特点(LIFO)。
顺序存储于链式存储都能实现一个栈,其中顺序存储的形式大概是这样:
一般的,把数组的第一个位置[0]作为栈底,再单独定义一个变量指示栈顶:
/* 顺序栈结构 */
typedef int SElemType;
typedef struct
{
SElemType data[MAXSIZE];
int top; /* 用于栈顶指针 */
}SqStack;
在栈的链式结构实现中,一般把链表的头指针做为栈顶,按照先后顺序来看的,这种定义与数组正好是反过来的,这是由于在顺序结构中,查找是非常方便的,插入和移动不方便。但是链式结构只知道头指针,查找不方便,但是插入方便,而对于栈而言,我们需要知道栈顶的位置,所以就干脆把链表头指针作为栈顶吧,同时由于插入方便,每次在链的开头插入一个结点很容易。
那么栈的链式存储的形式大概是这样:
typedef int SElemType;
/* 链栈结构 */
typedef struct StackNode
{
SElemType data;
struct StackNode *next;
}StackNode,*LinkStackPtr;
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 20
typedef int Status;
typedef int SElemType;
Status visit(SElemType c)
{
printf("%d ",c);
return OK;
}
顺序栈:
/* 构造一个空栈S */
Status InitStack(SqStack *S)
{
/* S.data=(SElemType *)malloc(MAXSIZE*sizeof(SElemType)); */
S->top=-1;
return OK;
}
/* 把S置为空栈 */
Status ClearStack(SqStack *S)
{
S->top=-1;
return OK;
}
/* 若栈S为空栈,则返回TRUE,否则返回FALSE */
Status StackEmpty(SqStack S)
{
if (S.top==-1)
return TRUE;
else
return FALSE;
}
/* 返回S的元素个数,即栈的长度 */
int StackLength(SqStack S)
{
return S.top+1;
}
/* 若栈不空,则用e返回S的栈顶元素,并返回OK;否则返回ERROR */
Status GetTop(SqStack S,SElemType *e)
{
if (S.top==-1)
return ERROR;
else
*e=S.data[S.top];
return OK;
}
/* 插入元素e为新的栈顶元素 */
Status Push(SqStack *S,SElemType e)
{
if(S->top == MAXSIZE -1) /* 栈满 */
{
return ERROR;
}
S->top++; /* 栈顶指针增加一 */
S->data[S->top]=e; /* 将新插入元素赋值给栈顶空间 */
return OK;
}
/* 若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERROR */
Status Pop(SqStack *S,SElemType *e)
{
if(S->top==-1)
return ERROR;
*e=S->data[S->top]; /* 将要删除的栈顶元素赋值给e */
S->top--; /* 栈顶指针减一 */
return OK;
}
/* 从栈底到栈顶依次对栈中每个元素显示 */
Status StackTraverse(SqStack S)
{
int i;
i=0;
while(i<=S.top)
{
visit(S.data[i++]);
}
printf("\n");
return OK;
}
链栈:
/* 构造一个空栈S */
Status InitStack(LinkStack *S)
{
S->top = (LinkStackPtr)malloc(sizeof(StackNode));
if(!S->top)
return ERROR;
S->top=NULL;
S->count=0;
return OK;
}
/* 把S置为空栈 */
Status ClearStack(LinkStack *S)
{
LinkStackPtr p,q;
p=S->top;
while(p)
{
q=p;
p=p->next;
free(q);
}
S->count=0;
return OK;
}
/* 若栈S为空栈,则返回TRUE,否则返回FALSE */
Status StackEmpty(LinkStack S)
{
if (S.count==0)
return TRUE;
else
return FALSE;
}
/* 返回S的元素个数,即栈的长度 */
int StackLength(LinkStack S)
{
return S.count;
}
/* 若栈不空,则用e返回S的栈顶元素,并返回OK;否则返回ERROR */
Status GetTop(LinkStack S,SElemType *e)
{
if (S.top==NULL)
return ERROR;
else
*e=S.top->data;
return OK;
}
/* 插入元素e为新的栈顶元素 */
Status Push(LinkStack *S,SElemType e)
{
LinkStackPtr s=(LinkStackPtr)malloc(sizeof(StackNode));
s->data=e;
s->next=S->top; /* 把当前的栈顶元素赋值给新结点的直接后继,见图中① */
S->top=s; /* 将新的结点s赋值给栈顶指针,见图中② */
S->count++;
return OK;
}
/* 若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERROR */
Status Pop(LinkStack *S,SElemType *e)
{
LinkStackPtr p;
if(StackEmpty(*S))
return ERROR;
*e=S->top->data;
p=S->top; /* 将栈顶结点赋值给p,见图中③ */
S->top=S->top->next; /* 使得栈顶指针下移一位,指向后一结点,见图中④ */
free(p); /* 释放结点p */
S->count--;
return OK;
}
/* 从栈底到栈顶依次对栈中每个元素显示 */
Status StackTraverse(LinkStack S)
{
LinkStackPtr p;
p=S.top;
while(p)
{
visit(p->data);
p=p->next;
}
printf("\n");
return OK;
}