纹理是一种反映图像中同质现象的视觉特征,它体现了物体表面的具有缓慢变化或者周期性变化的表面结构组织排列属性。纹理具有三大标志:
不同于灰度、颜色等图像特征,纹理通过像素及其周围空间邻域的灰度分布来表现,即局部纹理信息。另外,局部纹理信息不同程度上的重复性,就是全局纹理信息。 纹理特征体现全局特征的性质的同时,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。 在检索具有粗细、疏密等方面较大差别的纹理图像时,利用纹理特征是一种有效的方法。但当纹理之间的粗细、疏密等易于分辨的信息之间相差不大的时候,通常的纹理特征很难准确地反映出人的视觉感觉不同的纹理之间的差别。例如,水中的倒影,光滑的金属面互相反射造成的影响等都会导致纹理的变化。由于这些不是物体本身的特性,因而将纹理信息应用于检索时,有时这些虚假的纹理会对检索造成“误导”。
参考地址: 《图像特征提取(纹理特征)》 《纹理特征简介》
纹理特征分类图如下所示:
纹理特征的提取,一般都是通过设定一定大小的窗口,然后从中取得纹理特征。然而窗口的选择,存在着矛盾的要求:
这种情况下,会出现困难是:窗口太小,则会在同一种纹理内部出现误分割;而分析窗太大,则会在纹理边界区域出现许多误分割。
后文介绍纹理特征描述方法时,会从下面四个角度,分别对各方法进行比较:
按照纹理特征描述方法,可以分为以下几类:
统计方法是基于像素及其邻域的灰度属性,来研究纹理区域的统计特性。统计特性包括像素及其邻域内灰度的一阶、二阶或高阶统计特性等。 统计方法的典型代表,是一种被称为灰度共生矩阵(GLCM)的纹理分析方法。它是建立在估计图像的二阶组合条件概率密度基础上的一种方法。这种方法通过实验,研究了共生矩阵中各种统计特性,最后得出灰度共生矩阵中的四个关键特征:能量、惯量、熵和相关性。 尽管GLCM提取的纹理特征具有较好的鉴别能力,但是这个方法在计算上是昂贵的,尤其是对于像素级的纹理分类更具有局限性。并且,GLCM的计算较为耗时,好在不断有研究人员对其提出改进。 其他的统计方法,还包括图像的自相关函数,半方差图等。
几何法是建立在纹理基元理论基础上的一种纹理特征分析方法,其中的纹理基元即为基本的纹理元素。纹理基元理论认为,复杂的纹理可以由若干简单的纹理基元按照一定规律的形式重复排列构成。 在几何法中,比较有影响的算法有Voronio棋盘格特征法。 但几何法应用和发展极其受限,且后继研究很少。
模型法中存在假设:纹理是以某种参数控制的分布模型方式为基础而形成的。 由于模型法从纹理图像的实现来估计计算模型参数,同时以参数为特征,或采用某种分类策略进行图像分割,所以模型参数的估计是模型法的核心问题。 模型型纹理特征提取方法以随机场模型方法和分形模型方法为主。
随机场模型法的典型方法,如马尔可夫随机场(MRF)模型法、Gibbs随机场模型法、分形模型和自回归模型。
信号处理的方法是建立在时域、频域分析,以及多尺度分析的基础上。这种方法对纹理图像某个区域内实行某种变换后,再提取出能够保持相对平稳的特征值,并以该特征值作为特征,表示区域内的一致性以及区域之间的相异性。 信号处理类的纹理特征主要是利用某种线性变换、滤波器或者滤波器组将纹理转换到变换域,然后应用某种能量准则提取纹理特征。因此,基于信号处理的方法也称之为滤波方法。大多数信号处理方法的提出,都基于这样一个假设:频域的能量分布能够鉴别纹理。 信号处理法的经典算法有:灰度共生矩阵、Tamura纹理特征、自回归纹理模型、小波变换等。
结构分析法认为,纹理是由纹理基元的类型、数目、以及基元之间的“重复性”的空间组织结构与排列规则来描述的,而且纹理基元几乎具有规范的关系。假设纹理图像的基元可以被分离出来,以基元特征和排列规则进行纹理分割,显然结构分析法要解决的问题,就是确定与抽取基本的纹理单元,以及研究存在于纹理基元之间的“重复性”结构关系。 由于结构分析法强调纹理的规律性,所以比较适用于分析人造纹理,然而真实世界大量自然纹理通常是不规则的。此外,解耦股的变化是频繁的,所以结构分析法的应用受到很大程度的限制。 结构分析法的典型算法:句法纹理描述算法、数学形态学方法。
综上所述,在提取纹理特征的有效性方面,统计方法、模型法和信号处理法相较于几何法与结构分析法,可以说相差无几,都获得了认可。